找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Hybrid Soft Computing Models Applied to Graph Theory; Muhammad Akram,Fariha Zafar Book 2020 Springer Nature Switzerland AG 2020 Upper Appr

[復(fù)制鏈接]
樓主: Stubborn
11#
發(fā)表于 2025-3-23 13:32:47 | 只看該作者
12#
發(fā)表于 2025-3-23 17:31:21 | 只看該作者
Bipolar Fuzzy Soft Graphs,phs. We present certain notions of bipolar fuzzy soft graphs. We investigate some of their properties. We discuss several applications of the bipolar fuzzy soft graphs in multiple criteria decision-making problems. We also develop algorithms in each multiple criteria decision-making problem. This ch
13#
發(fā)表于 2025-3-23 20:16:06 | 只看該作者
Soft Rough Neutrosophic Influence Graphs,ft rough neutrosophic influence graphs, soft rough neutrosophic influence cycles and soft rough neutrosophic influence trees. We illustrate these concepts with examples, and investigate some of their properties. We solve a decision-making problem by using our proposed algorithm. This chapter is base
14#
發(fā)表于 2025-3-24 00:42:26 | 只看該作者
15#
發(fā)表于 2025-3-24 06:26:10 | 只看該作者
16#
發(fā)表于 2025-3-24 07:16:33 | 只看該作者
17#
發(fā)表于 2025-3-24 14:41:47 | 只看該作者
Muhammad Akram,Fariha ZafarExplains how construct and use rough fuzzy digraphs.Describes applications to different sets of data and complex problems.Describes relevant extensions, such as soft rough neutrosophic graphs
18#
發(fā)表于 2025-3-24 17:52:24 | 只看該作者
19#
發(fā)表于 2025-3-24 22:55:55 | 只看該作者
Bipolar Fuzzy Soft Graphs,phs. We present certain notions of bipolar fuzzy soft graphs. We investigate some of their properties. We discuss several applications of the bipolar fuzzy soft graphs in multiple criteria decision-making problems. We also develop algorithms in each multiple criteria decision-making problem. This chapter is based on [18].
20#
發(fā)表于 2025-3-25 01:06:55 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 18:51
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
舒兰市| 柳林县| 扎囊县| 怀集县| 嵩明县| 正安县| 青岛市| 南华县| 仲巴县| 宁陵县| 山东省| 鄂尔多斯市| 崇仁县| 萨迦县| 新和县| 利川市| 兴海县| 来安县| 陆良县| 麻江县| 滁州市| 南川市| 佛教| 康平县| 东兰县| 徐州市| 汶川县| 台湾省| 鄂托克旗| 晋江市| 突泉县| 汾西县| 腾冲县| 沙河市| 宝应县| 鹤山市| 梅河口市| 莱州市| 盐池县| 万荣县| 伊川县|