找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: How Many Zeroes?; Counting Solutions o Pinaki Mondal Textbook 2021 The Editor(s) (if applicable) and The Author(s), under exclusive license

[復制鏈接]
樓主: MOURN
41#
發(fā)表于 2025-3-28 17:22:25 | 只看該作者
Pinaki Mondalthe subjects of intense study by geneticists because their distinct functions are associated with specific nonoverlapping domains within the molecule. Experimenters can use site-specific mutagenesis to eliminate only one function while preserving others. Examples of genes kept nonfunctional by inser
42#
發(fā)表于 2025-3-28 19:23:51 | 只看該作者
the subjects of intense study by geneticists because their distinct functions are associated with specific nonoverlapping domains within the molecule. Experimenters can use site-specific mutagenesis to eliminate only one function while preserving others. Examples of genes kept nonfunctional by inser
43#
發(fā)表于 2025-3-28 22:57:04 | 只看該作者
https://doi.org/10.1007/978-3-030-75174-6Number of solutions/zeros of systems of polynomials; affine Bezout problem; Bezout‘s theorem; Bernstein
44#
發(fā)表于 2025-3-29 06:51:44 | 只看該作者
45#
發(fā)表于 2025-3-29 10:29:00 | 只看該作者
Convex polyhedrans . and . we prove the equivalence of these definitions after introducing the basic terminology. The rest of the chapter is devoted to different properties of polytopes which are implicitly or explicitly used in the forthcoming chapters.
46#
發(fā)表于 2025-3-29 14:20:46 | 只看該作者
Toric varieties over algebraically closed fieldsapters . and .; only in section . we use the notion of . discussed in section .. Unless explicitly stated otherwise, from this chapter onward . denotes an algebraically closed field (of arbitrary characteristic), and . denotes ..
47#
發(fā)表于 2025-3-29 17:30:40 | 只看該作者
48#
發(fā)表于 2025-3-29 22:46:50 | 只看該作者
Introduction,This book is about the problem of computing the number of solutions of systems of polynomials, or equivalently, the number of points of intersection of the sets of zeroes of polynomials. In this section we formulate the precise version of the problem we are going to study and give an informal description of the results.
49#
發(fā)表于 2025-3-30 00:17:12 | 只看該作者
A brief history of points at infinity in geometry,In this chapter we give a brief historical overview of the concept of points at infinity in geometry and the subsequent introduction of homogeneous coordinates on projective spaces.
50#
發(fā)表于 2025-3-30 06:23:43 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 13:30
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
宜兴市| 肇州县| 芦溪县| 息烽县| 东乡县| 杭锦后旗| 德阳市| 肃宁县| 酒泉市| 陈巴尔虎旗| 绥芬河市| 闵行区| 出国| 东莞市| 永州市| 秭归县| 临沂市| 化州市| 新乡市| 新巴尔虎左旗| 镇康县| 驻马店市| 日土县| 略阳县| 虞城县| 奉贤区| 景德镇市| 南投县| 广饶县| 增城市| 丹江口市| 苗栗县| 陵川县| 衡东县| 赤城县| 绥宁县| 克拉玛依市| 灌阳县| 合川市| 三门县| 景洪市|