找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Holomorphic Functions and Moduli II; Proceedings of a Wor D. Drasin,C. J. Earle,A. Marden Conference proceedings 1988 Springer-Verlag New Y

[復(fù)制鏈接]
樓主: fungus
11#
發(fā)表于 2025-3-23 13:29:01 | 只看該作者
Quasiconformal groups and the conical limit set. For . ≥ 2 we let R. denote euclidean .-space with the standard orthonormal basis ..,...,... its one point compactification equipped with chordal metric.
12#
發(fā)表于 2025-3-23 15:11:17 | 只看該作者
Quasiconformal Actions on Domains in SpaceThe purpose of this paper is to investigate the topological and analytical restrictions on a domain D in euclidean n-space .. on which an infinite discrete quasiconformal group can act. We will see that the restrictions are indeed severe, unlike the case of a discrete group of topological or differentiable homeomorphisms.
13#
發(fā)表于 2025-3-23 21:09:31 | 只看該作者
14#
發(fā)表于 2025-3-24 01:40:07 | 只看該作者
15#
發(fā)表于 2025-3-24 04:32:40 | 只看該作者
https://doi.org/10.1007/978-1-4613-9611-6Riemann surface; convergence; distribution; holomorphic function; operator; quasiconformal mapping
16#
發(fā)表于 2025-3-24 07:37:50 | 只看該作者
17#
發(fā)表于 2025-3-24 10:42:17 | 只看該作者
18#
發(fā)表于 2025-3-24 18:39:53 | 只看該作者
Generic fundamental polyhedra for kleinian groupswith the simplest possible local structure about its edges and vertices. For example, in the study of small deformations as in [.], a fundamental polyhedron for one group is compared to those of nearby groups; if the one polyhedron is as simple as possible, the nearby ones will tend to be as well. I
19#
發(fā)表于 2025-3-24 22:33:43 | 只看該作者
20#
發(fā)表于 2025-3-25 00:04:54 | 只看該作者
The limit set of a discrete group of hyperbolic motionse T orbits accumulate and, as such, is the set of points where T fails to act discontinuously. Over the last several years much work has been done on the classification of limit points—a major impetus in this direction has been provided by the application of ergodic theory to discrete groups. Put si
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-4 23:28
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
青河县| 保康县| 定结县| 宝丰县| 潼南县| 阿拉善左旗| 金沙县| 和政县| 翁牛特旗| 武宣县| 凤城市| 高要市| 海宁市| 固阳县| 安化县| 平顶山市| 富平县| 黑河市| 饶平县| 黄龙县| 襄垣县| 克山县| 潼关县| 清河县| 青冈县| 淮滨县| 武定县| 英吉沙县| 沈阳市| 章丘市| 高密市| 遂宁市| 合水县| 罗城| 寻甸| 英吉沙县| 乌兰县| 女性| 房山区| 治县。| 云龙县|