找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Holomorphic Functions and Moduli I; Proceedings of a Wor D. Drasin,I. Kra,F. W. Gehring Conference proceedings 1988 Springer-Verlag New Yor

[復(fù)制鏈接]
樓主: 教條
11#
發(fā)表于 2025-3-23 10:40:09 | 只看該作者
12#
發(fā)表于 2025-3-23 17:37:06 | 只看該作者
Conference proceedings 1988articles included here cover a broad spectrum, representative of the activities during the semester. We have made an attempt to group them by subject, for the reader‘s convenience. The Editors take pleasure in thanking all participants, authors and ref- erees for their work in producing these volume
13#
發(fā)表于 2025-3-23 19:05:39 | 只看該作者
14#
發(fā)表于 2025-3-23 23:43:07 | 只看該作者
15#
發(fā)表于 2025-3-24 03:35:38 | 只看該作者
Cone conditions and quasiconformal mappingste that, when . obeys a specific interior cone condition along its boundary, . must satisfy a uniform H?lder condition in ... With regard to .., the dual result one might anticipate — that an exterior cone condition satisfied by . at its boundary would lead to a uniform H?lder estimate for .. in . —
16#
發(fā)表于 2025-3-24 08:23:37 | 只看該作者
Mathematical Sciences Research Institute Publicationshttp://image.papertrans.cn/h/image/427951.jpg
17#
發(fā)表于 2025-3-24 12:20:53 | 只看該作者
18#
發(fā)表于 2025-3-24 15:54:06 | 只看該作者
Dynamics of holomorphic self-maps of ?*In this paper we classify the stable components of holomorphic self-maps of ?* which have finitely many singular values. We use this to study a one and a two parameter family of such functions. We examine the dynamic dependence of these functions on the parameters and study the parameter spaces themselves.
19#
發(fā)表于 2025-3-24 20:31:11 | 只看該作者
Automorphisms of rational mapsLet f(z) be a rational map, Aut(f) the finite group of M?bius transformations commuting with f. We study the question: when can two kinds of more flexible automorphisms of the dynamics of f be realized in Aut(g) for some deformation g of f?
20#
發(fā)表于 2025-3-25 01:33:40 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 00:08
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
神农架林区| 临湘市| 河西区| 永登县| 烟台市| 太原市| 华坪县| 大埔县| 聊城市| 连云港市| 甘南县| 虎林市| 九龙县| 三原县| 宣汉县| 虞城县| 进贤县| 绥德县| 洛浦县| 巴楚县| 苍溪县| 依安县| 稻城县| 屏东市| 通河县| 元谋县| 县级市| 山东| 涟水县| 封开县| 四平市| 怀柔区| 阜阳市| 滦平县| 咸丰县| 长岛县| 犍为县| 平和县| 土默特左旗| 盈江县| 瑞昌市|