找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Holomorphic Functions and Moduli I; Proceedings of a Wor D. Drasin,I. Kra,F. W. Gehring Conference proceedings 1988 Springer-Verlag New Yor

[復(fù)制鏈接]
樓主: 教條
11#
發(fā)表于 2025-3-23 10:40:09 | 只看該作者
12#
發(fā)表于 2025-3-23 17:37:06 | 只看該作者
Conference proceedings 1988articles included here cover a broad spectrum, representative of the activities during the semester. We have made an attempt to group them by subject, for the reader‘s convenience. The Editors take pleasure in thanking all participants, authors and ref- erees for their work in producing these volume
13#
發(fā)表于 2025-3-23 19:05:39 | 只看該作者
14#
發(fā)表于 2025-3-23 23:43:07 | 只看該作者
15#
發(fā)表于 2025-3-24 03:35:38 | 只看該作者
Cone conditions and quasiconformal mappingste that, when . obeys a specific interior cone condition along its boundary, . must satisfy a uniform H?lder condition in ... With regard to .., the dual result one might anticipate — that an exterior cone condition satisfied by . at its boundary would lead to a uniform H?lder estimate for .. in . —
16#
發(fā)表于 2025-3-24 08:23:37 | 只看該作者
Mathematical Sciences Research Institute Publicationshttp://image.papertrans.cn/h/image/427951.jpg
17#
發(fā)表于 2025-3-24 12:20:53 | 只看該作者
18#
發(fā)表于 2025-3-24 15:54:06 | 只看該作者
Dynamics of holomorphic self-maps of ?*In this paper we classify the stable components of holomorphic self-maps of ?* which have finitely many singular values. We use this to study a one and a two parameter family of such functions. We examine the dynamic dependence of these functions on the parameters and study the parameter spaces themselves.
19#
發(fā)表于 2025-3-24 20:31:11 | 只看該作者
Automorphisms of rational mapsLet f(z) be a rational map, Aut(f) the finite group of M?bius transformations commuting with f. We study the question: when can two kinds of more flexible automorphisms of the dynamics of f be realized in Aut(g) for some deformation g of f?
20#
發(fā)表于 2025-3-25 01:33:40 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 02:04
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
北票市| 调兵山市| 淮安市| 读书| 紫金县| 安康市| 斗六市| 增城市| 乡城县| 台北县| 福海县| 丹凤县| 富平县| 黑河市| 枣强县| 湄潭县| 沂水县| 长顺县| 临江市| 伊宁市| 新乡县| 铜川市| 连州市| 乐都县| 淳安县| 贺州市| 云阳县| 吉隆县| 得荣县| 京山县| 抚顺县| 思茅市| 庄浪县| 襄樊市| 建昌县| 山东| 崇州市| 南召县| 台东县| 菏泽市| 莒南县|