找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Holomorphic Foliations with Singularities; Key Concepts and Mod Bruno Scárdua Textbook 2021 The Editor(s) (if applicable) and The Author(s)

[復制鏈接]
樓主: coherent
11#
發(fā)表于 2025-3-23 12:29:22 | 只看該作者
Textbook 2021questions for further study and research. Selected exercises at the end of each chapter help the reader to grasp the theory..Graduate students in Mathematics with a special interest in the theory of foliations will especially benefit from this book, which can be used as supplementary reading in Sing
12#
發(fā)表于 2025-3-23 15:21:53 | 只看該作者
Bruno Scárduadie 1995 zum F?rderprogramm Demokratisch Handeln eingereicht wurden. .Das Buch enth?lt zus?tzlich einen Anhang über wichtige Einrichtungen und Ver?ffentlichungen zur politischen Bildung. Dadurch spricht es auch Studierende der politischen Wissenschaft an, die dieses Fach unterrichten wollen..
13#
發(fā)表于 2025-3-23 18:39:00 | 只看該作者
14#
發(fā)表于 2025-3-23 22:10:28 | 只看該作者
15#
發(fā)表于 2025-3-24 02:40:44 | 只看該作者
Bruno ScárduaUseful as supplementary reading in singularity courses and for independent study.Blends fundamental concepts in foliations and singularity theory with modern results on the topic.Includes relevant ope
16#
發(fā)表于 2025-3-24 09:21:04 | 只看該作者
Latin American Mathematics Serieshttp://image.papertrans.cn/h/image/427948.jpg
17#
發(fā)表于 2025-3-24 12:36:08 | 只看該作者
Holomorphic Foliations Given by Closed 1-Forms,closed 1-forms. We study their holonomy and some extension property. Starting with the holomorphic case we are to consider the meromorphic case, making use of the extension results. We study separately the cases of foliations given by closed holomorphic 1-forms and foliations given by closed meromorphic 1-forms.
18#
發(fā)表于 2025-3-24 15:38:19 | 只看該作者
Holomorphic First Integrals,ack even to the work of Poincaré and Painlevé. In modern terms, the striking result of Mattei-Moussu can be see as a landmark in the theory. In this chapter we give a detailed discussion and proof of Mattei-Moussu striking theorem as well as other parallel questions about first integrals of germs of holomorphic foliations.
19#
發(fā)表于 2025-3-24 19:47:32 | 只看該作者
https://doi.org/10.1007/978-3-030-76705-1foliations; singularities; topology; geometry; holomorphic foliations; dynamical systems; algebraic geomet
20#
發(fā)表于 2025-3-25 00:56:12 | 只看該作者
978-3-030-76707-5The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 18:04
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
思茅市| 云阳县| 那曲县| 渭源县| 百色市| 斗六市| 晋宁县| 泾源县| 承德县| 通道| 津市市| 佛学| 南丰县| 云霄县| 通山县| 满城县| 炎陵县| 子长县| 汝州市| 沅江市| 三都| 含山县| 呈贡县| 台中市| 垣曲县| 翁源县| 奇台县| 巴林左旗| 越西县| 延长县| 萨嘎县| 甘泉县| 兴海县| 宽甸| 勃利县| 开封市| 大余县| 台前县| 桂东县| 洪泽县| 环江|