找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Hilbert Modular Forms with Coefficients in Intersection Homology and Quadratic Base Change; Jayce Getz,Mark Goresky Book 2012 Springer Bas

[復(fù)制鏈接]
樓主: CYNIC
31#
發(fā)表于 2025-3-26 23:40:13 | 只看該作者
32#
發(fā)表于 2025-3-27 04:11:24 | 只看該作者
The Automorphic Description of Intersection Cohomology,
33#
發(fā)表于 2025-3-27 07:58:16 | 只看該作者
Hilbert Modular Forms with Coefficients in a Hecke Module,
34#
發(fā)表于 2025-3-27 10:24:16 | 只看該作者
35#
發(fā)表于 2025-3-27 16:50:54 | 只看該作者
Hilbert Modular Forms with Coefficients in Intersection Homology and Quadratic Base Change
36#
發(fā)表于 2025-3-27 18:24:49 | 只看該作者
37#
發(fā)表于 2025-3-28 01:19:55 | 只看該作者
38#
發(fā)表于 2025-3-28 02:13:21 | 只看該作者
Book 2012the Fourier coefficients of these forms in terms of period integrals and L-functions. In this book the authors take an alternate approach to these theorems and generalize them to the setting of Hilbert modular varieties of arbitrary dimension. The approach is conceptual and uses tools that were not
39#
發(fā)表于 2025-3-28 07:56:48 | 只看該作者
Book 2012 Hecke operators and Fourier coefficients of modular forms are presented both in the classical and adèlic settings. The book should provide a foundation for approaching similar questions for other locally symmetric spaces.
40#
發(fā)表于 2025-3-28 11:45:18 | 只看該作者
H. B?smüllernd used frequently throughout the book. Another major goal of the book is to provide students with enough practical understanding of the methods so they are able to write simple programs on their own. To achieve this, the book contains several MATLAB programs and detailed description of practical is
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 23:26
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
菏泽市| 平江县| 砚山县| 来安县| 宿松县| 淳安县| 芮城县| 长宁县| 平邑县| 呼玛县| 柏乡县| 顺义区| 武山县| 永泰县| 昌吉市| 界首市| 沭阳县| 信宜市| 敦化市| 镇沅| 廉江市| 阳高县| 大埔县| 鄯善县| 博爱县| 五峰| 罗源县| 岳阳市| 象州县| 泽库县| 乌兰浩特市| 宝山区| 蕉岭县| 集贤县| 甘孜| 武邑县| 福安市| 毕节市| 布拖县| 永宁县| 霍州市|