找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: High Performance Computing for Computational Science - VECPAR 2008; 8th International Co José M. Laginha M. Palma,Patrick R. Amestoy,Jo?o C

[復制鏈接]
樓主: osteomalacia
51#
發(fā)表于 2025-3-30 10:24:07 | 只看該作者
52#
發(fā)表于 2025-3-30 14:55:21 | 只看該作者
53#
發(fā)表于 2025-3-30 16:51:41 | 只看該作者
54#
發(fā)表于 2025-3-30 23:29:29 | 只看該作者
Miquel Pericàs,Ricardo Chaves,Georgi N. Gaydadjiev,Stamatis Vassiliadis,Mateo Valeroem, and to normalize a floating-point result. In the latter case, the shift amount is the result of a leading bit count. This chapter covers all these use cases, studying their requirements and proposing relevant architectures.
55#
發(fā)表于 2025-3-31 01:57:22 | 只看該作者
Improving the Performance of a Verified Linear System Solver Using Optimized Libraries and Parallel oned problems. In this scenario, a parallel version of a self-verified solver for dense linear systems appears to be essential in order to solve bigger problems. Moreover, the major goal of this research is to provide a free, fast, reliable and accurate solver for dense linear systems.
56#
發(fā)表于 2025-3-31 07:44:00 | 只看該作者
57#
發(fā)表于 2025-3-31 11:34:05 | 只看該作者
Tunable Parallel Experiments in a GridRPC Framework: Application to Linear Solversic analysis for instance) and one must focus on the wall-time completion. In this work we tackle the problem by using the . Grid middleware that integrates an adaptable . service to solve a set of experiments issued from the simulations of the . project.
58#
發(fā)表于 2025-3-31 14:17:16 | 只看該作者
59#
發(fā)表于 2025-3-31 19:58:01 | 只看該作者
Data Locality Aware Strategy for Two-Phase Collective?I/O stores and has as main purpose the reduction of the number of communication involved in the I/O collective operation and, therefore, the improvement of the global execution time. Compared with Two-Phase I/O, LATP I/O obtains important improvements in most of the considered scenarios.
60#
發(fā)表于 2025-3-31 23:46:47 | 只看該作者
A Parallel Incremental Learning Algorithm for Neural Networks with Fault Tolerancele, due to memory limitations. The parallel algorithm presented in this paper is usable in any parallel system, and in particular, with large dynamical systems such as clusters and grids in which faults may occur. Finally, the quality and performances (without and with faults) of that algorithm are experimentally evaluated.
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 17:13
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
长武县| 榆树市| 河池市| 云安县| 阳西县| 兴文县| 饶平县| 凌海市| 巴林右旗| 台北市| 清镇市| 三门峡市| 湾仔区| 兴宁市| 工布江达县| 渝北区| 车致| 临朐县| 乃东县| 宜宾县| 瑞金市| 柯坪县| 海安县| 澄迈县| 收藏| 梨树县| 白山市| 兰坪| 马尔康县| 肥城市| 阜新| 崇礼县| 会同县| 正蓝旗| 柳河县| 临潭县| 江华| 宁海县| 昌乐县| 巴南区| 鹰潭市|