找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: High Dimensional Probability VI; The Banff Volume Christian Houdré,David M. Mason,Jon A. Wellner Conference proceedings 2013 Springer Basel

[復(fù)制鏈接]
樓主: incompatible
11#
發(fā)表于 2025-3-23 10:21:13 | 只看該作者
Empirical Quantile CLTs for Time-dependent Data., where . is a closed sub-interval of (0, 1). The process {.. : .} may be chosen from a broad collection of Gaussian processes, compound Poisson processes, stationary independent increment stable processes, and martingales.
12#
發(fā)表于 2025-3-23 17:03:03 | 只看該作者
13#
發(fā)表于 2025-3-23 18:16:00 | 只看該作者
14#
發(fā)表于 2025-3-23 22:52:58 | 只看該作者
15#
發(fā)表于 2025-3-24 02:34:39 | 只看該作者
16#
發(fā)表于 2025-3-24 07:46:56 | 只看該作者
High Dimensional Probability VI978-3-0348-0490-5Series ISSN 1050-6977 Series E-ISSN 2297-0428
17#
發(fā)表于 2025-3-24 14:13:38 | 只看該作者
Slepian’s Inequality, Modularity and Integral Orderingsariants are imposing to strong regularity conditions. The first part of this paper contains a unified version of Slepian’s inequality under minimal regularity conditions, covering all the variants I know about. It is well known that Slepian’s inequality is closely connected to integral orderings in
18#
發(fā)表于 2025-3-24 15:28:50 | 只看該作者
19#
發(fā)表于 2025-3-24 19:48:50 | 只看該作者
20#
發(fā)表于 2025-3-25 01:40:37 | 只看該作者
Strong Log-concavity is Preserved by Convolutionon of strong log-concavity are known in the discrete setting (where strong log-concavity is known as “ultra-log-concavity”), preservation of strong logconcavity under convolution has apparently not been investigated previously in the continuous case.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-15 12:15
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
治县。| 竹北市| 赤城县| 双城市| 将乐县| 泰来县| 呼伦贝尔市| 江陵县| 潞西市| 乌兰县| 昌都县| 吴桥县| 腾冲县| 勃利县| 望都县| 万山特区| 治县。| 基隆市| 天门市| 太仓市| 乌苏市| 高雄市| 休宁县| 东莞市| 隆尧县| 潜江市| 衡东县| 宜都市| 通城县| 东阿县| 平利县| 明水县| 新蔡县| 都安| 虹口区| 旺苍县| 清涧县| 天祝| 临江市| 旬阳县| 乐至县|