找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Hermitian–Grassmannian Submanifolds; Daegu, Korea, July 2 Young Jin Suh,Yoshihiro Ohnita,Hyunjin Lee Conference proceedings 2017 Springer N

[復制鏈接]
樓主: deflate
51#
發(fā)表于 2025-3-30 09:53:53 | 只看該作者
Characterizations of a Clifford Hypersurface in a Unit Sphere,aces among constant .-th order mean curvature hypersurfaces with two distinct principal curvatures. One is obtained by assuming embeddedness and by comparing two distinct principal curvatures. The proof uses the maximum principle to the two-point function, which was used in the proof of Lawson conje
52#
發(fā)表于 2025-3-30 12:47:32 | 只看該作者
53#
發(fā)表于 2025-3-30 17:22:04 | 只看該作者
54#
發(fā)表于 2025-3-30 23:52:42 | 只看該作者
55#
發(fā)表于 2025-3-31 04:10:10 | 只看該作者
56#
發(fā)表于 2025-3-31 05:13:55 | 只看該作者
Transversally Complex Submanifolds of a Quaternion Projective Space,aternionic differential geometry. There are several examples of transversally complex immersions of Hermitian symmetric spaces. For a transversally complex immersion ., a key notion is a Gauss map associated with ., which is a map . with .. Our theory is an attempt of a generalization of the theory
57#
發(fā)表于 2025-3-31 11:50:27 | 只看該作者
e present state of knowledge to say which is the most relevant model of human obesity, it seems better to work with a broad selection of models if the aetiology of obesity and its associated metabolic changes are to be understood.
58#
發(fā)表于 2025-3-31 14:21:35 | 只看該作者
Volume-Preserving Mean Curvature Flow for Tubes in Rank One Symmetric Spaces of Non-compact Type,with respect to the center of the closed geodesic ball. Furthermore, in this case, we prove that the flow reaches to the invariant submanifold or it exists in infinite time and converges to a tube of constant mean curvature over the closed geodesic ball in the .-topology in infinite time.
59#
發(fā)表于 2025-3-31 19:21:59 | 只看該作者
60#
發(fā)表于 2025-3-31 23:45:05 | 只看該作者
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-15 12:12
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
闸北区| 漳平市| 福鼎市| 东宁县| 涿鹿县| 安乡县| 民和| 唐海县| 资中县| 长治县| 察哈| 嘉荫县| 新营市| 恩施市| 土默特右旗| 赞皇县| 重庆市| 辉县市| 清河县| 宜兰县| 平顶山市| 恩施市| 吉木乃县| 淳化县| 武夷山市| 隆尧县| 盱眙县| 易门县| 文水县| 麦盖提县| 汝城县| 布拖县| 彰化县| 恭城| 化隆| 册亨县| 泽普县| 唐海县| 海淀区| 宁阳县| 灌阳县|