找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Heidelberger Jahrbücher; Universit?ts-Gesellschaft Conference proceedings 1965 Springer-Verlag Berlin · Heidelberg 1965 Glauben.Johann Wol

[復(fù)制鏈接]
樓主: inroad
11#
發(fā)表于 2025-3-23 11:58:05 | 只看該作者
12#
發(fā)表于 2025-3-23 15:11:47 | 只看該作者
Wilhelm Gallasin Sect.?.) and tensor products (which are essential in the discussion of holomorphic line bundles in Chap.?.). In this book, we mostly consider exterior and tensor products in vector spaces of dimension?1?or?2.
13#
發(fā)表于 2025-3-23 20:34:24 | 只看該作者
Hans Reschkesider conditions that guarantee the existence of holomorphic sections with prescribed values. Unlike the open Riemann surface case (in which one has Theorem?3.11.5), a?holomorphic line bundle need not have the positivity required for such a section to exist. For example, the space of holomorphic fun
14#
發(fā)表于 2025-3-24 00:41:08 | 只看該作者
Gerhard Hess.). The first goal is the following Riemann surface analogue of the classical Riemann mapping theorem in the plane:.. (Riemann mapping theorem) .??., .??, . Δ={.∈?||.|<1}..The second goal of this chapter is the fact that every Riemann surface?. may be obtained by holomorphic attachment of tubes at e
15#
發(fā)表于 2025-3-24 05:26:43 | 只看該作者
16#
發(fā)表于 2025-3-24 08:57:48 | 只看該作者
in Sect.?.) and tensor products (which are essential in the discussion of holomorphic line bundles in Chap.?.). In this book, we mostly consider exterior and tensor products in vector spaces of dimension?1?or?2.
17#
發(fā)表于 2025-3-24 14:00:50 | 只看該作者
Wilhelm Gallasin Sect.?.) and tensor products (which are essential in the discussion of holomorphic line bundles in Chap.?.). In this book, we mostly consider exterior and tensor products in vector spaces of dimension?1?or?2.
18#
發(fā)表于 2025-3-24 17:34:25 | 只看該作者
19#
發(fā)表于 2025-3-24 19:47:28 | 只看該作者
20#
發(fā)表于 2025-3-25 00:17:47 | 只看該作者
Wilhelm DoerrOverview: Introduction to modern geometry.Presenting various techniques applied in the theoretical physics.Additional topics of the second edition are the modern language and modern view of Algebraic Geometry a978-3-642-09027-1978-3-540-71175-9Series ISSN 1864-5879 Series E-ISSN 1864-5887
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 08:21
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
定结县| 濮阳市| 东明县| 韩城市| 柳河县| 高平市| 阿尔山市| 长武县| 勃利县| 乐昌市| 侯马市| 黄平县| 游戏| 平阳县| 中方县| 特克斯县| 金塔县| 铁岭县| 峡江县| 内江市| 且末县| 襄垣县| 鹤峰县| 从化市| 永康市| 上栗县| 正安县| 和硕县| 新宾| 堆龙德庆县| 高阳县| 柳河县| 集安市| 磴口县| 高平市| 尼勒克县| 平江县| 勃利县| 佛学| 若尔盖县| 威信县|