找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Heidelberger Jahrbücher; Universit?ts-Gesellschaft Conference proceedings 1965 Springer-Verlag Berlin · Heidelberg 1965 Glauben.Johann Wol

[復(fù)制鏈接]
樓主: inroad
11#
發(fā)表于 2025-3-23 11:58:05 | 只看該作者
12#
發(fā)表于 2025-3-23 15:11:47 | 只看該作者
Wilhelm Gallasin Sect.?.) and tensor products (which are essential in the discussion of holomorphic line bundles in Chap.?.). In this book, we mostly consider exterior and tensor products in vector spaces of dimension?1?or?2.
13#
發(fā)表于 2025-3-23 20:34:24 | 只看該作者
Hans Reschkesider conditions that guarantee the existence of holomorphic sections with prescribed values. Unlike the open Riemann surface case (in which one has Theorem?3.11.5), a?holomorphic line bundle need not have the positivity required for such a section to exist. For example, the space of holomorphic fun
14#
發(fā)表于 2025-3-24 00:41:08 | 只看該作者
Gerhard Hess.). The first goal is the following Riemann surface analogue of the classical Riemann mapping theorem in the plane:.. (Riemann mapping theorem) .??., .??, . Δ={.∈?||.|<1}..The second goal of this chapter is the fact that every Riemann surface?. may be obtained by holomorphic attachment of tubes at e
15#
發(fā)表于 2025-3-24 05:26:43 | 只看該作者
16#
發(fā)表于 2025-3-24 08:57:48 | 只看該作者
in Sect.?.) and tensor products (which are essential in the discussion of holomorphic line bundles in Chap.?.). In this book, we mostly consider exterior and tensor products in vector spaces of dimension?1?or?2.
17#
發(fā)表于 2025-3-24 14:00:50 | 只看該作者
Wilhelm Gallasin Sect.?.) and tensor products (which are essential in the discussion of holomorphic line bundles in Chap.?.). In this book, we mostly consider exterior and tensor products in vector spaces of dimension?1?or?2.
18#
發(fā)表于 2025-3-24 17:34:25 | 只看該作者
19#
發(fā)表于 2025-3-24 19:47:28 | 只看該作者
20#
發(fā)表于 2025-3-25 00:17:47 | 只看該作者
Wilhelm DoerrOverview: Introduction to modern geometry.Presenting various techniques applied in the theoretical physics.Additional topics of the second edition are the modern language and modern view of Algebraic Geometry a978-3-642-09027-1978-3-540-71175-9Series ISSN 1864-5879 Series E-ISSN 1864-5887
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 06:29
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
安义县| 延边| 丰都县| 西和县| 牡丹江市| 罗定市| 丰城市| 乌审旗| 商丘市| 固安县| 文山县| 化州市| 霸州市| 碌曲县| 永登县| 芜湖市| 太原市| 武宣县| 盐山县| 南汇区| 雅江县| 广丰县| 肥西县| 涟源市| 普兰县| 公主岭市| 旬邑县| 中阳县| 兰坪| 大悟县| 霍山县| 沁水县| 霍城县| 尖扎县| 广灵县| 社旗县| 长宁县| 连南| 信阳市| 巫山县| 辉南县|