找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Health Care Transition; Building a Program f Albert C. Hergenroeder,Constance M. Wiemann Book 2018 Springer International Publishing AG, pa

[復(fù)制鏈接]
樓主: Systole
11#
發(fā)表于 2025-3-23 11:20:21 | 只看該作者
Laura G. Buckner M.Ed., L.P.C.In this note we consider cases in which a curve in ?r which is scheme theoretically the intersection of quadrics necessarily has homogeneous ideal generated by quadrics. The first case in which this does not happen is for a general elliptic octic in ?.; we give a proof of this using the surjectivity of the period map for K3 surfaces.
12#
發(fā)表于 2025-3-23 13:52:22 | 只看該作者
Cecily L. Betz Ph.D., R.N.This volume presents selected papers resulting from the meeting at Sundance on enumerative algebraic geometry. The papers are original research articles and concentrate on the underlying geometry of the subject.
13#
發(fā)表于 2025-3-23 20:52:06 | 只看該作者
14#
發(fā)表于 2025-3-23 22:12:52 | 只看該作者
Beth Sufian J.D.,James Passamano J.D.,Amy Sopchak J.D.In this note we consider cases in which a curve in ?r which is scheme theoretically the intersection of quadrics necessarily has homogeneous ideal generated by quadrics. The first case in which this does not happen is for a general elliptic octic in ?.; we give a proof of this using the surjectivity of the period map for K3 surfaces.
15#
發(fā)表于 2025-3-24 04:18:56 | 只看該作者
16#
發(fā)表于 2025-3-24 07:17:25 | 只看該作者
17#
發(fā)表于 2025-3-24 13:58:56 | 只看該作者
18#
發(fā)表于 2025-3-24 17:09:24 | 只看該作者
Roberta G. Williams M.D.,Ellen F. Iverson M.P.H.In this note we consider cases in which a curve in ?r which is scheme theoretically the intersection of quadrics necessarily has homogeneous ideal generated by quadrics. The first case in which this does not happen is for a general elliptic octic in ?.; we give a proof of this using the surjectivity of the period map for K3 surfaces.
19#
發(fā)表于 2025-3-24 22:56:08 | 只看該作者
20#
發(fā)表于 2025-3-25 00:34:58 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-15 12:10
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
新乡市| 汉阴县| 德兴市| 眉山市| 探索| 连江县| 永定县| 溆浦县| 新密市| 淮阳县| 仁寿县| 永春县| 杭锦旗| 怀来县| 镶黄旗| 喜德县| 左云县| 隆林| 安庆市| 临夏县| 随州市| 确山县| 和龙市| 德令哈市| 武邑县| 广水市| 年辖:市辖区| 黄骅市| 鄂托克前旗| 兴化市| 福安市| 荆州市| 拉萨市| 新蔡县| 克东县| 咸丰县| 大城县| 子洲县| 化德县| 新安县| 龙泉市|