找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Health Care Systems Engineering for Scientists and Practitioners; HCSE, Lyon, France, Andrea Matta,Evren Sahin,Nico J. Vandaele Conference

[復(fù)制鏈接]
樓主: 兇惡的老婦
31#
發(fā)表于 2025-3-27 00:14:16 | 只看該作者
32#
發(fā)表于 2025-3-27 02:54:49 | 只看該作者
33#
發(fā)表于 2025-3-27 08:24:04 | 只看該作者
34#
發(fā)表于 2025-3-27 13:18:01 | 只看該作者
35#
發(fā)表于 2025-3-27 13:41:15 | 只看該作者
Paola Cappanera,Filippo Visintin,Carlo Banditorinn surface of the function. One can get a complete picture of the function only by considering it on the whole of its Riemann surface. This surface has a nontrivial geometry, which determines some of the essential characters of the function.
36#
發(fā)表于 2025-3-27 20:46:44 | 只看該作者
Multi-criteria Decision Making Approaches to Prioritize Surgical Patients,s and mitigate the limitations of the prioritization systems observed in practice. Our numerical study confirms that the proposed models, which consider various perspectives in determining patients’ priorities, show a remarkable robustness.
37#
發(fā)表于 2025-3-28 01:05:50 | 只看該作者
38#
發(fā)表于 2025-3-28 03:21:55 | 只看該作者
39#
發(fā)表于 2025-3-28 09:04:09 | 只看該作者
Yong-Hong Kuo,Janny M. Y. Leung,Colin A. Grahamh as possible and to concentrate on geometry, we shall assume in the first three chapters that the field . is algebraically closed. In the present chapter we shall also examine the simplest notions from algebraic geometry that have direct analogues in the differentiable and analytic cases.
40#
發(fā)表于 2025-3-28 10:51:23 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-10 03:16
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
德州市| 潞城市| 城口县| 玉林市| 依安县| 武夷山市| 修水县| 汤阴县| 登封市| 大新县| 大港区| 台北县| 泰安市| 曲阳县| 山西省| 镇康县| 罗山县| 那坡县| 平远县| 尚义县| 阳新县| 丰台区| 海原县| 赣州市| 沈阳市| 光山县| 永仁县| 嘉禾县| 灵武市| 改则县| 子洲县| 吉林市| 尚志市| 陆河县| 新野县| 平凉市| 玉树县| 红安县| 沈丘县| 祁东县| 新津县|