找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Health Care Computing; A Survival guide for Philip Burnard Book 1995 Philip Burnard 1995 Windows.databases.design.productivity.software

[復(fù)制鏈接]
樓主: 小費(fèi)
31#
發(fā)表于 2025-3-26 20:56:28 | 只看該作者
32#
發(fā)表于 2025-3-27 04:46:45 | 只看該作者
33#
發(fā)表于 2025-3-27 05:59:05 | 只看該作者
34#
發(fā)表于 2025-3-27 13:16:52 | 只看該作者
Philip Burnard we need a far more precise description of the first order degenerations (13 in all) than that given by Schubert and this is obtained by proving a number of key geometric relations that are satisfied by cuspidal cubics. Moreover, our procedure does not require using coincidence formulas to derive the basic degeneration relations.
35#
發(fā)表于 2025-3-27 13:51:38 | 只看該作者
Philip Burnard we need a far more precise description of the first order degenerations (13 in all) than that given by Schubert and this is obtained by proving a number of key geometric relations that are satisfied by cuspidal cubics. Moreover, our procedure does not require using coincidence formulas to derive the basic degeneration relations.
36#
發(fā)表于 2025-3-27 20:00:02 | 只看該作者
37#
發(fā)表于 2025-3-28 01:45:23 | 只看該作者
38#
發(fā)表于 2025-3-28 05:26:39 | 只看該作者
39#
發(fā)表于 2025-3-28 10:15:43 | 只看該作者
Philip Burnard we need a far more precise description of the first order degenerations (13 in all) than that given by Schubert and this is obtained by proving a number of key geometric relations that are satisfied by cuspidal cubics. Moreover, our procedure does not require using coincidence formulas to derive the basic degeneration relations.
40#
發(fā)表于 2025-3-28 14:12:24 | 只看該作者
Philip Burnard we need a far more precise description of the first order degenerations (13 in all) than that given by Schubert and this is obtained by proving a number of key geometric relations that are satisfied by cuspidal cubics. Moreover, our procedure does not require using coincidence formulas to derive the basic degeneration relations.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-14 23:12
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
高雄县| 文登市| 邻水| 桂东县| 平安县| 临潭县| 陕西省| 平凉市| 凤凰县| 舞阳县| 鸡西市| 东光县| 手游| 团风县| 彭山县| 深水埗区| 云龙县| 依安县| 黎平县| 当涂县| 黑水县| 固安县| 盐城市| 西平县| 辉南县| 浠水县| 富锦市| 南陵县| 民和| 乌兰察布市| 富宁县| 大竹县| 深州市| 崇仁县| 嘉黎县| 五常市| 启东市| 宜都市| 西畴县| 丁青县| 密云县|