找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Health Care Computing; A Survival guide for Philip Burnard Book 1995 Philip Burnard 1995 Windows.databases.design.productivity.software

[復(fù)制鏈接]
樓主: 小費(fèi)
31#
發(fā)表于 2025-3-26 20:56:28 | 只看該作者
32#
發(fā)表于 2025-3-27 04:46:45 | 只看該作者
33#
發(fā)表于 2025-3-27 05:59:05 | 只看該作者
34#
發(fā)表于 2025-3-27 13:16:52 | 只看該作者
Philip Burnard we need a far more precise description of the first order degenerations (13 in all) than that given by Schubert and this is obtained by proving a number of key geometric relations that are satisfied by cuspidal cubics. Moreover, our procedure does not require using coincidence formulas to derive the basic degeneration relations.
35#
發(fā)表于 2025-3-27 13:51:38 | 只看該作者
Philip Burnard we need a far more precise description of the first order degenerations (13 in all) than that given by Schubert and this is obtained by proving a number of key geometric relations that are satisfied by cuspidal cubics. Moreover, our procedure does not require using coincidence formulas to derive the basic degeneration relations.
36#
發(fā)表于 2025-3-27 20:00:02 | 只看該作者
37#
發(fā)表于 2025-3-28 01:45:23 | 只看該作者
38#
發(fā)表于 2025-3-28 05:26:39 | 只看該作者
39#
發(fā)表于 2025-3-28 10:15:43 | 只看該作者
Philip Burnard we need a far more precise description of the first order degenerations (13 in all) than that given by Schubert and this is obtained by proving a number of key geometric relations that are satisfied by cuspidal cubics. Moreover, our procedure does not require using coincidence formulas to derive the basic degeneration relations.
40#
發(fā)表于 2025-3-28 14:12:24 | 只看該作者
Philip Burnard we need a far more precise description of the first order degenerations (13 in all) than that given by Schubert and this is obtained by proving a number of key geometric relations that are satisfied by cuspidal cubics. Moreover, our procedure does not require using coincidence formulas to derive the basic degeneration relations.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-15 08:56
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
临沭县| 绥滨县| 交城县| 襄汾县| 吉安县| 宝坻区| 宽城| 卢龙县| 波密县| 城固县| 广河县| 洛浦县| 姜堰市| 黄陵县| 锡林郭勒盟| 施秉县| 高青县| 毕节市| 扬州市| 平江县| 宜兰市| 泉州市| 岑溪市| 乌兰察布市| 集安市| 绥芬河市| 安岳县| 临城县| 颍上县| 民权县| 永靖县| 平塘县| 东乌珠穆沁旗| 五华县| 库车县| 灵武市| 扎赉特旗| 秭归县| 达州市| 久治县| 卓资县|