找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Harmonic Analysis, Partial Differential Equations, Banach Spaces, and Operator Theory (Volume 2); Celebrating Cora Sad María Cristina Perey

[復制鏈接]
樓主: Croching
21#
發(fā)表于 2025-3-25 03:30:18 | 只看該作者
22#
發(fā)表于 2025-3-25 09:04:56 | 只看該作者
Rational Inner Functions on a Square-Matrix Polyball unit square-matrix polyball. In the scalar-valued case, we characterize the denominators of these functions. We also show that a multiple of every polynomial with no zeros in the closed domain is such a denominator. One of our tools is the Korányi–Vagi theorem generalizing Rudin’s description of ra
23#
發(fā)表于 2025-3-25 12:40:14 | 只看該作者
24#
發(fā)表于 2025-3-25 19:35:38 | 只看該作者
A Two Weight Fractional Singular Integral Theorem with Side Conditions, Energy and ,-Energy Disperse (possibly having common point masses), and let .. be a standard .-fractional Calderón-Zygmund operator on . with 0 ≤ . < .. Suppose that . is a globally biLipschitz map, and refer to the images . of cubes . as .. Furthermore, assume as side conditions the . conditions, punctured ... conditions, and
25#
發(fā)表于 2025-3-25 22:37:05 | 只看該作者
On Toeplitz Operators with Quasi-radial and Pseudo-homogeneous Symbolsre a natural extension of the previously studied quasi-radial quasi-homogeneous symbols, and contain them as a very special particular case. Roughly speaking, instead of the fixed specific bounded continuous functions we admit now any ..-functions.
26#
發(fā)表于 2025-3-26 03:49:31 | 只看該作者
also assisting them to “l(fā)ive an independent life.” Like its German counterpart, it consists of a two-tiered system of support. A relatively rule-bound standardized grant is intended to cover most typical living expenses a household will incur. A second, more discretionary, area of support is availa
27#
發(fā)表于 2025-3-26 05:10:15 | 只看該作者
28#
發(fā)表于 2025-3-26 11:53:22 | 只看該作者
29#
發(fā)表于 2025-3-26 16:28:41 | 只看該作者
30#
發(fā)表于 2025-3-26 20:34:37 | 只看該作者
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 16:04
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
大城县| 久治县| 库尔勒市| 罗平县| 沛县| 蓬溪县| 遂溪县| 荥经县| 桂东县| 大丰市| 台北市| 广水市| 肥城市| 宝坻区| 临沭县| 和龙市| 贞丰县| 南阳市| 霍林郭勒市| 泾川县| 周口市| 姚安县| 锡林郭勒盟| 灵石县| 阿坝县| 巨野县| 内江市| 盈江县| 手游| 河东区| 洪雅县| 图木舒克市| 浏阳市| 易门县| 晴隆县| 隆子县| 平安县| 安徽省| 凤阳县| 霍山县| 项城市|