找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Harmonic Analysis, Partial Differential Equations, Banach Spaces, and Operator Theory (Volume 2); Celebrating Cora Sad María Cristina Perey

[復(fù)制鏈接]
樓主: Croching
21#
發(fā)表于 2025-3-25 03:30:18 | 只看該作者
22#
發(fā)表于 2025-3-25 09:04:56 | 只看該作者
Rational Inner Functions on a Square-Matrix Polyball unit square-matrix polyball. In the scalar-valued case, we characterize the denominators of these functions. We also show that a multiple of every polynomial with no zeros in the closed domain is such a denominator. One of our tools is the Korányi–Vagi theorem generalizing Rudin’s description of ra
23#
發(fā)表于 2025-3-25 12:40:14 | 只看該作者
24#
發(fā)表于 2025-3-25 19:35:38 | 只看該作者
A Two Weight Fractional Singular Integral Theorem with Side Conditions, Energy and ,-Energy Disperse (possibly having common point masses), and let .. be a standard .-fractional Calderón-Zygmund operator on . with 0 ≤ . < .. Suppose that . is a globally biLipschitz map, and refer to the images . of cubes . as .. Furthermore, assume as side conditions the . conditions, punctured ... conditions, and
25#
發(fā)表于 2025-3-25 22:37:05 | 只看該作者
On Toeplitz Operators with Quasi-radial and Pseudo-homogeneous Symbolsre a natural extension of the previously studied quasi-radial quasi-homogeneous symbols, and contain them as a very special particular case. Roughly speaking, instead of the fixed specific bounded continuous functions we admit now any ..-functions.
26#
發(fā)表于 2025-3-26 03:49:31 | 只看該作者
also assisting them to “l(fā)ive an independent life.” Like its German counterpart, it consists of a two-tiered system of support. A relatively rule-bound standardized grant is intended to cover most typical living expenses a household will incur. A second, more discretionary, area of support is availa
27#
發(fā)表于 2025-3-26 05:10:15 | 只看該作者
28#
發(fā)表于 2025-3-26 11:53:22 | 只看該作者
29#
發(fā)表于 2025-3-26 16:28:41 | 只看該作者
30#
發(fā)表于 2025-3-26 20:34:37 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 18:03
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
峨边| 濮阳县| 康保县| 醴陵市| 大竹县| 临颍县| 德格县| 泌阳县| 桓台县| 郧西县| 霍林郭勒市| 延吉市| 临高县| 山东省| 汉源县| 孙吴县| 兰坪| 瑞安市| 大荔县| 岑溪市| 永吉县| 巴南区| 福安市| 通州区| 焦作市| 运城市| 施秉县| 瑞安市| 乐昌市| 尼勒克县| 尉氏县| 宽甸| 阳东县| 通州区| 临夏县| 丽水市| 潜江市| 天水市| 塔河县| 武强县| 富顺县|