找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Harmonic Analysis and Representations of Semisimple Lie Groups; Lectures given at th J. A. Wolf,M. Cahen,M. Wilde Book 1980 D. Reidel Publi

[復制鏈接]
樓主: ODDS
11#
發(fā)表于 2025-3-23 13:26:34 | 只看該作者
M. Flato,D. Sternheimerthe programmer from having to consider low level details of the parallel architecture. This allows the programmer to concentrate on the more abstract aspects of concurrent algorithms, while retaining sufficient control to efficiently exploit the parallelism available in the architecture.
12#
發(fā)表于 2025-3-23 13:59:48 | 只看該作者
13#
發(fā)表于 2025-3-23 20:38:04 | 只看該作者
14#
發(fā)表于 2025-3-24 01:11:33 | 只看該作者
Jacques Simonconcern that arises from the survey and the analysis is the lack of evaluation of agent-based methodologies, which may have negatively affected, at least in part, the adoption of these methodologies for developing agent-based systems. We also discuss the need to further extend the methodologies to s
15#
發(fā)表于 2025-3-24 05:38:25 | 只看該作者
16#
發(fā)表于 2025-3-24 09:40:50 | 只看該作者
Book 1980y J. Wolf describes the structure of semisimple Lie groups, the finite-dimensional representations of these groups and introduces basic facts about infinite-dimensional unitary representations. Two of the editors want to thank particularly these two lecturers who were very careful to pave the way fo
17#
發(fā)表于 2025-3-24 14:25:38 | 只看該作者
18#
發(fā)表于 2025-3-24 15:07:20 | 只看該作者
Joseph A. Wolf? Five years ago, we wrote: “Agent concepts could fundamentally alter the nature of information systems of the future, and how we build them, much like structured analysis, ER modeling, and Obj978-3-540-22127-2978-3-540-25943-5Series ISSN 0302-9743 Series E-ISSN 1611-3349
19#
發(fā)表于 2025-3-24 20:39:19 | 只看該作者
20#
發(fā)表于 2025-3-25 00:26:18 | 只看該作者
Harmonic Analysis and Representations of Semisimple Lie GroupsLectures given at th
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2025-10-15 07:17
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
临泉县| 重庆市| 汉阴县| 东安县| 博兴县| 新宾| 昂仁县| 衡山县| 星子县| 吉水县| 维西| 丰都县| 平原县| 柳河县| 尚志市| 甘肃省| 任丘市| 深水埗区| 祁连县| 舞钢市| 图木舒克市| 阜宁县| 天峻县| 潢川县| 成安县| 茌平县| 定日县| 开原市| 威远县| 喀喇沁旗| 仁寿县| 专栏| 休宁县| 资兴市| 蒙自县| 崇文区| 本溪市| 建湖县| 临清市| 广丰县| 太湖县|