找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Harmonic Analysis and Boundary Value Problems in the Complex Domain; Mkhitar M. Djrbashian Book 1993 Springer Basel AG 1993 Boundary value

[復(fù)制鏈接]
樓主: sprawl
31#
發(fā)表于 2025-3-26 23:34:40 | 只看該作者
32#
發(fā)表于 2025-3-27 01:35:38 | 只看該作者
33#
發(fā)表于 2025-3-27 09:11:27 | 只看該作者
34#
發(fā)表于 2025-3-27 10:02:41 | 只看該作者
Harmonic Analysis and Boundary Value Problems in the Complex Domain978-3-0348-8549-2Series ISSN 0255-0156 Series E-ISSN 2296-4878
35#
發(fā)表于 2025-3-27 16:05:37 | 只看該作者
36#
發(fā)表于 2025-3-27 20:45:31 | 只看該作者
Some estimates in Banach spaces of analytic functions,The series of lemmas and theorems proved in this chapter establishes some estimates of norms in different weighted spaces of functions analytic in a half-plane and also in different weighted spaces of entire functions of exponential type. Later chapters of the book are based on these results and the results of Chapters 1 and 2.
37#
發(fā)表于 2025-3-27 23:13:44 | 只看該作者
38#
發(fā)表于 2025-3-28 02:53:31 | 只看該作者
39#
發(fā)表于 2025-3-28 09:31:06 | 只看該作者
Interpolation series expansions in spaces,of entire functions,In this chapter we establish interpolation series expansions in the Banach spaces.of entire functions Φ(.) of arbitrary natural order . ≥ 1 and of type ≤σ, satisfying the condition., where it is assumed, as always, that..
40#
發(fā)表于 2025-3-28 14:01:09 | 只看該作者
Further results. Wiener-Paley type theorems,ry of parametric representations of various classes of entire and analytic functions restricted by additional conditions of weighted integrability on suitable systems of rays. The main results of this chapter will be used later on, but nevertheless, we present them without proofs. The proofs can be found in M. M. Djrbashian’s monograph [5].
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 04:51
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
萨迦县| 曲麻莱县| 咸丰县| 涟源市| 霍城县| 信宜市| 高州市| 新巴尔虎左旗| 金堂县| 宣恩县| 德令哈市| 商河县| 竹山县| 汤原县| 盐源县| 黑龙江省| 互助| 宁阳县| 香河县| 凯里市| 蚌埠市| 罗甸县| 绩溪县| 乌鲁木齐市| 大庆市| 台北市| 亳州市| 剑河县| 静安区| 莒南县| 莱芜市| 邹城市| 盐池县| 闻喜县| 天镇县| 宁波市| 武宁县| 西平县| 大方县| 开江县| 广元市|