找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Hands-on Machine Learning with Python; Implement Neural Net Ashwin Pajankar,Aditya Joshi Book 2022 Ashwin Pajankar and Aditya Joshi 2022 Ma

[復制鏈接]
樓主: VER
51#
發(fā)表于 2025-3-30 09:30:10 | 只看該作者
Ashwin Pajankar,Aditya Joshiflooding is presented to show that although the research has included many parameters, a large portion of the work has centered on air and water in tubes ranging from 38 mm to 50 mm in diameter. Some detail of individual experiments is presented to demonstrate various types of apparatus and instrume
52#
發(fā)表于 2025-3-30 12:23:14 | 只看該作者
53#
發(fā)表于 2025-3-30 18:16:59 | 只看該作者
54#
發(fā)表于 2025-3-31 00:32:49 | 只看該作者
Ashwin Pajankar,Aditya Joshis chapter presents type-2 fuzzy tool life estimation system. In this system, type-2 fuzzy analysis is used as not only a powerful tool to model acoustic emission signal features, but also a great estimator for the ambiguities and uncertainties associated with them. Depending on the estimation of roo
55#
發(fā)表于 2025-3-31 01:34:43 | 只看該作者
Ashwin Pajankar,Aditya Joshihese upper and lower values for the level of fuzziness in FCM algorithm were obtained in our previous studies. A particular application of Interval valued type-2 fuzziness is shown for cluster validity analysis in this chapter. For this purpose, we introduce a brief taxonomy for cluster validity ind
56#
發(fā)表于 2025-3-31 08:21:14 | 只看該作者
57#
發(fā)表于 2025-3-31 11:12:37 | 只看該作者
Ashwin Pajankar,Aditya Joshinal behavior of an uncertain discrete-time Markov process through infinite type-1 fuzzy sets embedded in its .. In this way, a finite state fuzzy Markov chain process is defined in an interval type-2 fuzzy environment. To do so, its limiting properties and its type-reduced behavior are defined and a
58#
發(fā)表于 2025-3-31 17:05:07 | 只看該作者
59#
發(fā)表于 2025-3-31 18:04:54 | 只看該作者
60#
發(fā)表于 2025-3-31 22:46:30 | 只看該作者
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 21:05
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
纳雍县| 滨州市| 和顺县| 大英县| 成安县| 临颍县| 湘潭市| 林州市| 三门峡市| 象州县| 伊吾县| 蒙城县| 葵青区| 马龙县| 延川县| 玉溪市| 枞阳县| 西乌| 大冶市| 保德县| 尖扎县| 澄江县| 盱眙县| 类乌齐县| 临汾市| 铁岭市| 南华县| 清远市| 彩票| 会同县| 深州市| 富民县| 翁牛特旗| 梅州市| 台南县| 雷州市| 永登县| 定结县| 赤城县| 仙游县| 新安县|