找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Handbook of Set Theory; Matthew Foreman,Akihiro Kanamori Book 2010 Springer Science+Business Media B.V. 2010 Arithmetic.Combinatorics.Cont

[復(fù)制鏈接]
樓主: Croching
21#
發(fā)表于 2025-3-25 06:58:06 | 只看該作者
22#
發(fā)表于 2025-3-25 09:50:59 | 只看該作者
23#
發(fā)表于 2025-3-25 14:48:52 | 只看該作者
Constructibility and Class Forcing,re turning to the most important technique in the subject, the technique of .. Armed with these ideas we then proceed to describe the solutions to the Solovay problems. We next discuss ., a concept which helps to explain the special role of 0. in this theory. We end by briefly describing some other applications.
24#
發(fā)表于 2025-3-25 19:12:34 | 只看該作者
25#
發(fā)表于 2025-3-25 23:41:51 | 只看該作者
26#
發(fā)表于 2025-3-26 01:30:00 | 只看該作者
Coherent Sequences, assumes that the corresponding .-sequence is coherent. Another emphasis of this chapter is on applications of the method of ordinal walks to more classical themes of set theory such as, for example, the Tree Property, Chang’s Conjecture, Souslin Hypothesis, Mahlo Hierarchy, etc. The chapter also includes a number of open problems.
27#
發(fā)表于 2025-3-26 04:36:42 | 只看該作者
28#
發(fā)表于 2025-3-26 09:06:14 | 只看該作者
Book 2010ient Greeks. The urge to understand and systematize the mathematics of the time led Euclid to postulate axioms in an early attempt to put geometry on a ?rm footing. With roots in the Elements, the distinctive methodology of mathematics has become proof. Inevitably two questions arise: What are proof
29#
發(fā)表于 2025-3-26 14:54:05 | 只看該作者
30#
發(fā)表于 2025-3-26 17:19:17 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-14 16:00
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
周至县| 京山县| 普安县| 延庆县| 沧州市| 台湾省| 赤壁市| 樟树市| 山东省| 华亭县| 涟水县| 盈江县| 清流县| 新龙县| 武川县| 万州区| 平遥县| 延津县| 石柱| 五河县| 资中县| 阜城县| 浦北县| 阿荣旗| 肇源县| 成武县| 历史| 青浦区| 利津县| 新密市| 岳池县| 临潭县| 迁安市| 伊吾县| 临猗县| 巍山| 沙河市| 仙居县| 榆树市| 阿巴嘎旗| 汉沽区|