找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Handbook of Mathematics; I.N. Bronshtein,K.A. Semendyayev,Heiner Mühlig Book 2015Latest edition Springer-Verlag Berlin Heidelberg 2015 Ana

[復(fù)制鏈接]
樓主: Clinton
41#
發(fā)表于 2025-3-28 16:08:13 | 只看該作者
Algebra and Discrete Mathematics,A . is the mental reflection of a fact, expressed as a sentence in a natural or artificial language. Every proposition is considered to be true or false.
42#
發(fā)表于 2025-3-28 19:47:10 | 只看該作者
43#
發(fā)表于 2025-3-29 02:04:10 | 只看該作者
Differential Equations,. is an equation, in which one or more variables, one or more functions of these variables, and also the derivatives of these functions with respect to these variables occur. The . of a differential equation is equal to the order of the highest occurring derivative.
44#
發(fā)表于 2025-3-29 04:49:49 | 只看該作者
Calculus of Variations,A very important problem of the differential calculus is to determine for which . values the given function .(.) has extreme values. The calculus of variations discusses the following problem: For which functions has a certain integral, whose integrand depends also on the unknown function and its derivatives, an extremum value?
45#
發(fā)表于 2025-3-29 07:56:37 | 只看該作者
Linear Integral Equations,An integral equation is an equation in which the unknown function appears under the integral sign. There is no universal method for solving integral equations. Solution methods and even the existence of a solution depend on the particular form of the integral equation.
46#
發(fā)表于 2025-3-29 14:46:56 | 只看該作者
47#
發(fā)表于 2025-3-29 16:58:12 | 只看該作者
48#
發(fā)表于 2025-3-29 22:40:39 | 只看該作者
Function Theory,Analogously to real functions, complex values can be assigned to complex values, i.e., to the value .?=?.?+?i . one can assign a complex number .?=?.?+?i ., where .?=?.(.) and .?=?.(.) are real functions of two real variables. This relation is denoted by .?=?.(.). The function .?=?.(.) is a mapping from the complex . plane to the complex . plane.
49#
發(fā)表于 2025-3-30 00:51:26 | 只看該作者
50#
發(fā)表于 2025-3-30 08:04:31 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 07:11
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
临江市| 宜丰县| 石家庄市| 南和县| 敦化市| 余干县| 赞皇县| 阿城市| 呼伦贝尔市| 宝山区| 都匀市| 陈巴尔虎旗| 沁水县| 日土县| 蕲春县| 黔西县| 庆元县| 绿春县| 靖宇县| 宁乡县| 九龙城区| 仁怀市| 两当县| 怀远县| 安乡县| 育儿| 嵊泗县| 阳朔县| 荔波县| 西畴县| 泽普县| 榆社县| 金山区| 仙居县| 建瓯市| 临湘市| 嘉黎县| 博白县| 安丘市| 将乐县| 扶风县|