找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Handbook of Generalized Convexity and Generalized Monotonicity; Nicolas Hadjisavvas,Sándor Komlósi,Siegfried Schai Textbook 2005 Springer-

[復(fù)制鏈接]
樓主: calcification
11#
發(fā)表于 2025-3-23 13:29:58 | 只看該作者
12#
發(fā)表于 2025-3-23 15:58:33 | 只看該作者
13#
發(fā)表于 2025-3-23 20:21:42 | 只看該作者
https://doi.org/10.1007/978-3-658-42067-3raic and topological properties of convex sets within ?. together with their primal and dual representations. In Section 3 we apply the results for convex sets to convex and quasiconvex functions and show how these results can be used to give primal and dual representations of the functions consider
14#
發(fā)表于 2025-3-24 02:11:12 | 只看該作者
https://doi.org/10.1007/978-3-663-07690-2Moreover, the function is locally Lipschitz in the interior of the domain of the function. If for a quasiconvex function, the convexity concerns the lower level sets and not the epigraph, some important properties on continuity and differentiability are still preserved. An important property of quas
15#
發(fā)表于 2025-3-24 04:38:24 | 只看該作者
https://doi.org/10.1007/978-3-322-90272-6o optimality of stationary points and to sufficiency of first order necessary optimality conditions for scalar and vector problems. Despite of the numerous classes of generalized convex functions suggested in these last fifty years, we have limited ourselves to introduce and study those classes of s
16#
發(fā)表于 2025-3-24 10:25:03 | 只看該作者
17#
發(fā)表于 2025-3-24 14:01:23 | 只看該作者
Hilde Weiss,Philipp Schnell,Gülay Ate?x functions related to their global nature. One of the main applications of abstract convexity is global optimization. Apart from discussing the various fundamental facts about abstract convexity we also study quasiconvex functions in the light of abstract convexity. We further describe the surprisi
18#
發(fā)表于 2025-3-24 15:54:51 | 只看該作者
https://doi.org/10.1007/978-3-531-91907-2le-ratio fractional programs, min-max fractional programs and sum- of-ratios fractional programs. Given the limited advances for the latter class of problems, we focus on an analysis of min-max fractional programs. A parametric approach is employed to develop both theoretical and algorithmic results
19#
發(fā)表于 2025-3-24 23:03:43 | 只看該作者
https://doi.org/10.1007/978-3-663-01395-2ons. In addition we present topologically pseudomonotone maps. We then derive sufficient and/or necessary conditions for various kinds of generalized monotonicity for several subclasses of maps. We study differentiable maps, locally Lipschitz maps, general continuous maps and affine maps.
20#
發(fā)表于 2025-3-25 01:45:27 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 10:38
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
兴城市| 长治县| 宣威市| 泰兴市| 洛阳市| 田东县| 田林县| 万宁市| 大同市| 湖北省| 田林县| 招远市| 泰州市| 华池县| 大同县| 鹤山市| 永寿县| 定西市| 新龙县| 樟树市| 鄂州市| 新田县| 龙泉市| 陵川县| 百色市| 福州市| 华容县| 民县| 兴山县| 阳信县| 水富县| 汉川市| 大埔县| 临猗县| 高青县| 安阳市| 新竹市| 深水埗区| 南川市| 柞水县| 阳西县|