找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Handbook of Face Recognition; Stan Z. Li,Anil K. Jain Book 2011Latest edition Springer-Verlag London Limited 2011

[復(fù)制鏈接]
樓主: risky-drinking
11#
發(fā)表于 2025-3-23 13:32:16 | 只看該作者
12#
發(fā)表于 2025-3-23 17:56:23 | 只看該作者
13#
發(fā)表于 2025-3-23 21:23:19 | 只看該作者
978-1-4471-7119-5Springer-Verlag London Limited 2011
14#
發(fā)表于 2025-3-23 22:20:09 | 只看該作者
Zerebrale Aneurysmen und Gef??malformationenThis chapter provides an introduction to face recognition research. Main steps of face recognition processing are described. Face detection and recognition problems are explained from a face subspace viewpoint. Technology challenges are identified after that. Typical strategies for solving the problems are suggested.
15#
發(fā)表于 2025-3-24 05:25:31 | 只看該作者
Introduction,This chapter provides an introduction to face recognition research. Main steps of face recognition processing are described. Face detection and recognition problems are explained from a face subspace viewpoint. Technology challenges are identified after that. Typical strategies for solving the problems are suggested.
16#
發(fā)表于 2025-3-24 06:49:33 | 只看該作者
17#
發(fā)表于 2025-3-24 10:57:58 | 只看該作者
Face Subspace Learningral mean criteria and the max-min distance analysis (MMDA) algorithm; manifold learning algorithms, including the discriminative locality alignment (DLA) and manifold elastic net (MEN); and the transfer subspace learning framework. Experiments on face recognition are also provided.
18#
發(fā)表于 2025-3-24 18:40:53 | 只看該作者
Local Representation of Facial Featureses to describe faces for recognition, verification, localization, or detection, is a fundamental problem in face biometrics. In this chapter, we review the most popular and successful features for face biometrics. In general, one should include complete algorithms when comparing the features, but ce
19#
發(fā)表于 2025-3-24 20:23:45 | 只看該作者
Zerebrale Gef??krankheiten im Alterer vision research in general, has witnessed a growing interest in techniques that capitalize on this observation and apply algebraic and statistical tools for extraction and analysis of the underlying manifold. In this chapter, we describe in roughly chronologic order techniques that identify, para
20#
發(fā)表于 2025-3-25 02:05:16 | 只看該作者
https://doi.org/10.1007/978-3-662-10993-9ral mean criteria and the max-min distance analysis (MMDA) algorithm; manifold learning algorithms, including the discriminative locality alignment (DLA) and manifold elastic net (MEN); and the transfer subspace learning framework. Experiments on face recognition are also provided.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 09:34
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
贡嘎县| 怀柔区| 孙吴县| 宣汉县| 阿拉善盟| 松溪县| 义乌市| 宜川县| 孙吴县| 新安县| 南皮县| 正阳县| 阿拉善左旗| 醴陵市| 昌平区| 舒城县| 沿河| 元阳县| 婺源县| 桃园县| 湘潭县| 临海市| 铜川市| 霞浦县| 福贡县| 七台河市| 宁阳县| 册亨县| 景德镇市| 内江市| 远安县| 乌鲁木齐县| 南开区| 乳源| 宾阳县| 夏河县| 兴仁县| 鹿邑县| 华蓥市| 星子县| 大埔县|