找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Handbook of Face Recognition; Stan Z. Li,Anil K. Jain Book 2011Latest edition Springer-Verlag London Limited 2011

[復(fù)制鏈接]
樓主: risky-drinking
11#
發(fā)表于 2025-3-23 13:32:16 | 只看該作者
12#
發(fā)表于 2025-3-23 17:56:23 | 只看該作者
13#
發(fā)表于 2025-3-23 21:23:19 | 只看該作者
978-1-4471-7119-5Springer-Verlag London Limited 2011
14#
發(fā)表于 2025-3-23 22:20:09 | 只看該作者
Zerebrale Aneurysmen und Gef??malformationenThis chapter provides an introduction to face recognition research. Main steps of face recognition processing are described. Face detection and recognition problems are explained from a face subspace viewpoint. Technology challenges are identified after that. Typical strategies for solving the problems are suggested.
15#
發(fā)表于 2025-3-24 05:25:31 | 只看該作者
Introduction,This chapter provides an introduction to face recognition research. Main steps of face recognition processing are described. Face detection and recognition problems are explained from a face subspace viewpoint. Technology challenges are identified after that. Typical strategies for solving the problems are suggested.
16#
發(fā)表于 2025-3-24 06:49:33 | 只看該作者
17#
發(fā)表于 2025-3-24 10:57:58 | 只看該作者
Face Subspace Learningral mean criteria and the max-min distance analysis (MMDA) algorithm; manifold learning algorithms, including the discriminative locality alignment (DLA) and manifold elastic net (MEN); and the transfer subspace learning framework. Experiments on face recognition are also provided.
18#
發(fā)表于 2025-3-24 18:40:53 | 只看該作者
Local Representation of Facial Featureses to describe faces for recognition, verification, localization, or detection, is a fundamental problem in face biometrics. In this chapter, we review the most popular and successful features for face biometrics. In general, one should include complete algorithms when comparing the features, but ce
19#
發(fā)表于 2025-3-24 20:23:45 | 只看該作者
Zerebrale Gef??krankheiten im Alterer vision research in general, has witnessed a growing interest in techniques that capitalize on this observation and apply algebraic and statistical tools for extraction and analysis of the underlying manifold. In this chapter, we describe in roughly chronologic order techniques that identify, para
20#
發(fā)表于 2025-3-25 02:05:16 | 只看該作者
https://doi.org/10.1007/978-3-662-10993-9ral mean criteria and the max-min distance analysis (MMDA) algorithm; manifold learning algorithms, including the discriminative locality alignment (DLA) and manifold elastic net (MEN); and the transfer subspace learning framework. Experiments on face recognition are also provided.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 00:26
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
称多县| 镇巴县| 安仁县| 双流县| 扶风县| 塔河县| 大新县| 徐汇区| 曲阳县| 承德县| 定结县| 会昌县| 朝阳区| 彭州市| 淮阳县| 宝坻区| 甘孜县| 海伦市| 小金县| 永寿县| 分宜县| 高雄县| 泰安市| 青河县| 彭泽县| 韶山市| 镇巴县| 昂仁县| 长兴县| 麻城市| 临泽县| 营口市| 平舆县| 民勤县| 阳曲县| 含山县| 涞水县| 淮北市| 咸宁市| 绥江县| 娄烦县|