找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Handbook of Elasticity Solutions; Mark Kachanov,Boris Shafiro,Igor Tsukrov Book 2003 Springer Science+Business Media Dordrecht 2003 materi

[復(fù)制鏈接]
樓主: 調(diào)停
21#
發(fā)表于 2025-3-25 06:22:09 | 只看該作者
Three-dimensional crack problems for the isotropic or transversely isotropic infinite solid,This chapter gives displacements, stresses, stress intensity factors (SIFs) and displacement discontinuities (crack opening displacements, CODs) in an infinite solid containing one crack. The solid is assumed to be either isotropic or transversely isotropic; in the latter case, the crack is parallel to the isotropy plane.
22#
發(fā)表于 2025-3-25 09:35:52 | 只看該作者
A crack in an infinite anisotropic two-dimensional solid,Elastic stiffnesses and compliances are denoted by .. and .., respectively, so that Hooke’s law takes the form ..
23#
發(fā)表于 2025-3-25 13:41:22 | 只看該作者
Thermoelasticity,In this section, basic governing equations of thermoelasticity are summarized. The solid is assumed ., from the point of view of both the elastic properties and the thermal conductivity.
24#
發(fā)表于 2025-3-25 18:03:50 | 只看該作者
25#
發(fā)表于 2025-3-25 21:41:14 | 只看該作者
Elastic space containing a rigid ellipsoidal inclusion subjected to translation and rotation,A rigid ellipsoidal inclusion is embedded into an infinite elastic space. It is given a small displacement and a small rotation. This chapter gives the resulting elastic fields (solution was given by Lur’e (1970) in a somewhat incomplete form and with errors; for a corrected solution in the complete form, see Kachanov et al. (2001).
26#
發(fā)表于 2025-3-26 03:38:29 | 只看該作者
Basic stress intensity factors (SIFs) and stress concentrations (2-D configurations),SIFs selected for this section are those relevant for the basic fracture mechanics. Much larger collections, with applications to various structural mechanics problems, can be found in several handbooks of SIFs (Sih, 1973, Tada et al., 1973, Rooke & Cartwright, 1976, Mukarami, 1987).
27#
發(fā)表于 2025-3-26 07:36:37 | 只看該作者
28#
發(fā)表于 2025-3-26 11:15:34 | 只看該作者
29#
發(fā)表于 2025-3-26 15:20:11 | 只看該作者
30#
發(fā)表于 2025-3-26 20:30:22 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-15 03:03
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
宜丰县| 天台县| 阳谷县| 鹿邑县| 鲁山县| 通许县| 胶州市| 江西省| 镇平县| 梧州市| 敦化市| 白城市| 讷河市| 西和县| 辽阳市| 澄迈县| 河西区| 日照市| 广丰县| 芜湖市| 昌黎县| 炎陵县| 行唐县| 许昌市| 大姚县| 桦南县| 韶山市| 和政县| 措美县| 大荔县| 南投市| 松阳县| 惠来县| 上林县| 长寿区| 柳江县| 鹿邑县| 南阳市| 永安市| 昌宁县| 琼结县|