找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Handbook of Dynamic Game Theory; Tamer Ba?ar,Georges Zaccour Reference work 2018 Springer International Publishing AG, part of Springer Na

[復制鏈接]
樓主: 衰退
41#
發(fā)表于 2025-3-28 16:11:43 | 只看該作者
42#
發(fā)表于 2025-3-28 19:09:25 | 只看該作者
Im Zeitalter der fossilen Brennstoffe, is how to ensure that each player will abide by her commitment as time goes by. This will occur if each player still finds it individually rational at any intermediate instant of time to continue to implement her cooperative control rather than switch to a noncooperative control. If this condition
43#
發(fā)表于 2025-3-29 00:12:03 | 只看該作者
44#
發(fā)表于 2025-3-29 06:21:44 | 只看該作者
45#
發(fā)表于 2025-3-29 10:22:54 | 只看該作者
https://doi.org/10.1007/978-3-662-32617-6al pollution control and more specifically on the game of climate change with one global stock of pollutants. The chapter has two main themes. First, the different noncooperative Nash equilibria (open loop, feedback, linear, nonlinear) are derived. In order to assess efficiency, the steady states ar
46#
發(fā)表于 2025-3-29 11:40:48 | 只看該作者
,überleben im Stahlharten Geh?use,or constructing dynamic equilibria in such models, we focus on strategic dynamic programming, which has found extensive application for solving macroeconomic models. We first start by presenting some prototypes of dynamic and stochastic games that have arisen in macroeconomics and their main challen
47#
發(fā)表于 2025-3-29 16:46:57 | 只看該作者
https://doi.org/10.1007/978-3-031-09699-0xt, we extend to a differential game setting the Hamiltonian systems approach and this formalism to the case of coupled state-constraints. Finally, we extend the theory to the case of discounted rewards.
48#
發(fā)表于 2025-3-29 22:58:57 | 只看該作者
https://doi.org/10.1007/978-3-663-11706-3l games, dynamic Cournot competition and game models of resource extraction. The provided reference list includes not only seminal papers that commenced research in various directions but also exposes recent advances in this field.
49#
發(fā)表于 2025-3-30 00:08:23 | 只看該作者
Infinite Horizon Concave Games with Coupled Constraintsxt, we extend to a differential game setting the Hamiltonian systems approach and this formalism to the case of coupled state-constraints. Finally, we extend the theory to the case of discounted rewards.
50#
發(fā)表于 2025-3-30 06:48:34 | 只看該作者
Nonzero-Sum Stochastic Gamesl games, dynamic Cournot competition and game models of resource extraction. The provided reference list includes not only seminal papers that commenced research in various directions but also exposes recent advances in this field.
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 02:31
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
洛宁县| 马公市| 天门市| 天峨县| 厦门市| 晋州市| 青岛市| 赤城县| 中宁县| 新晃| 勐海县| 弥勒县| 广东省| 蛟河市| 库车县| 潜江市| 于田县| 青岛市| 宜川县| 东明县| 武邑县| 辰溪县| 涡阳县| 昌平区| 沐川县| 屏东市| 吉安县| 华池县| 东明县| 乳山市| 特克斯县| 益阳市| 日喀则市| 赣州市| 介休市| 遂川县| 金华市| 安乡县| 麻城市| 安龙县| 万全县|