找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Hamiltonian Systems with Three or More Degrees of Freedom; Carles Simó Book 1999 Springer Science+Business Media Dordrecht 1999 Kolmogorov

[復制鏈接]
查看: 50960|回復: 58
樓主
發(fā)表于 2025-3-21 17:01:29 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Hamiltonian Systems with Three or More Degrees of Freedom
編輯Carles Simó
視頻videohttp://file.papertrans.cn/421/420641/420641.mp4
叢書名稱Nato Science Series C:
圖書封面Titlebook: Hamiltonian Systems with Three or More Degrees of Freedom;  Carles Simó Book 1999 Springer Science+Business Media Dordrecht 1999 Kolmogorov
描述A survey of current knowledge about Hamiltonian systems withthree or more degrees of freedom and related topics. The Hamiltoniansystems appearing in most of the applications are non-integrable.Hence methods to prove non-integrability results are presented and thedifferent meaning attributed to non-integrability are discussed. Forsystems near an integrable one, it can be shown that, under suitableconditions, some parts of the integrable structure, most of theinvariant tori, survive. Many of the papers discuss near-integrablesystems. .From a topological point of view, some singularities must appear indifferent problems, either caustics, geodesics, moving wavefronts,etc. This is also related to singularities in the projections ofinvariant objects, and can be used as a signature of these objects.Hyperbolic dynamics appear as a source on unpredictable behaviour andseveral mechanisms of hyperbolicity are presented. The destruction oftori leads to Aubrey-Mather objects, and this is touched on for arelated class of systems. Examples without periodic orbits areconstructed, against a classical conjecture. .Other topics concern higher dimensional systems, either finite(networks and localised
出版日期Book 1999
關(guān)鍵詞Kolmogorov–Arnold–Moser theorem; Signatur; degrees of freedom; dynamics; mechanics; partial differential
版次1
doihttps://doi.org/10.1007/978-94-011-4673-9
isbn_softcover978-94-010-5968-8
isbn_ebook978-94-011-4673-9Series ISSN 1389-2185
issn_series 1389-2185
copyrightSpringer Science+Business Media Dordrecht 1999
The information of publication is updating

書目名稱Hamiltonian Systems with Three or More Degrees of Freedom影響因子(影響力)




書目名稱Hamiltonian Systems with Three or More Degrees of Freedom影響因子(影響力)學科排名




書目名稱Hamiltonian Systems with Three or More Degrees of Freedom網(wǎng)絡公開度




書目名稱Hamiltonian Systems with Three or More Degrees of Freedom網(wǎng)絡公開度學科排名




書目名稱Hamiltonian Systems with Three or More Degrees of Freedom被引頻次




書目名稱Hamiltonian Systems with Three or More Degrees of Freedom被引頻次學科排名




書目名稱Hamiltonian Systems with Three or More Degrees of Freedom年度引用




書目名稱Hamiltonian Systems with Three or More Degrees of Freedom年度引用學科排名




書目名稱Hamiltonian Systems with Three or More Degrees of Freedom讀者反饋




書目名稱Hamiltonian Systems with Three or More Degrees of Freedom讀者反饋學科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:57:03 | 只看該作者
板凳
發(fā)表于 2025-3-22 03:04:36 | 只看該作者
地板
發(fā)表于 2025-3-22 06:52:06 | 只看該作者
5#
發(fā)表于 2025-3-22 09:13:09 | 只看該作者
https://doi.org/10.1007/978-94-015-9692-3arameter. A careful analysis of the accumulation of the small divisors shows that it can be controlled geometrically. As a consequence, the proof of convergence is based essentially on Cauchy’s majorants method, with no use of the so called quadratic method. A short comparison with Lindstedt’s series is included.
6#
發(fā)表于 2025-3-22 15:31:54 | 只看該作者
7#
發(fā)表于 2025-3-22 19:26:36 | 只看該作者
Isao Tanaka,Nobuhiro Tsuji,Haruyuki Inuif several planets. For most of the simple commensurabilities, chaotic motion leads to high eccentricities which lead to planet crossing, which lead to removal of the asteroid. For the 2:1 commensurability, the result is not so clear and still controversial.
8#
發(fā)表于 2025-3-23 00:20:01 | 只看該作者
9#
發(fā)表于 2025-3-23 03:09:44 | 只看該作者
10#
發(fā)表于 2025-3-23 08:06:12 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 02:24
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
汝南县| 习水县| 滦南县| 井陉县| 奉节县| 信宜市| 南康市| 兴海县| 西贡区| 芦山县| 溧阳市| 大荔县| 中方县| 洪洞县| 永登县| 寿宁县| 七台河市| 鸡西市| 沙田区| 庆安县| 乌兰县| 南康市| 曲麻莱县| 安西县| 龙游县| 绿春县| 龙南县| 汉源县| 泽库县| 沧州市| 芜湖县| 平度市| 防城港市| 天津市| 海盐县| 安吉县| 大田县| 钟祥市| 若尔盖县| 阜阳市| 溧阳市|