找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Hamiltonian Partial Differential Equations and Applications; Philippe Guyenne,David Nicholls,Catherine Sulem Book 2015 Springer Science+Bu

[復(fù)制鏈接]
樓主: 夾子
41#
發(fā)表于 2025-3-28 18:07:05 | 只看該作者
42#
發(fā)表于 2025-3-28 21:48:53 | 只看該作者
Book 2015eir applications. Topics covered within are representative of the field’s wide scope, including KAM and normal form theories, perturbation and variational methods, integrable systems, stability of nonlinear solutions as well as applications to cosmology, fluid mechanics and water waves..The volume c
43#
發(fā)表于 2025-3-29 02:00:23 | 只看該作者
44#
發(fā)表于 2025-3-29 05:50:25 | 只看該作者
https://doi.org/10.1007/978-1-4757-1370-1ced rate. Moreover, the behavior of the low modes is governed by finite-dimensional dynamics on an appropriate center manifold, which corresponds exactly to diffusion by a fluid with viscosity proportional to 1∕..
45#
發(fā)表于 2025-3-29 09:00:22 | 只看該作者
,Hamiltonian Structure, Fluid Representation and Stability for the Vlasov–Dirac–Benney Equation,roblem. Hence it is a pleasure to present this article to Walter Craig in recognition to the pioneering work he made for our community, among other things, on the relations between Hamiltonian systems and Partial Differential Equations.
46#
發(fā)表于 2025-3-29 11:34:09 | 只看該作者
47#
發(fā)表于 2025-3-29 17:15:12 | 只看該作者
48#
發(fā)表于 2025-3-29 23:06:18 | 只看該作者
49#
發(fā)表于 2025-3-30 00:31:09 | 只看該作者
https://doi.org/10.1007/978-1-4613-1051-8sical heuristic ideas that have been used for its explanation, we concentrate on more recent rigorous results which are based on the use of (i) canonical perturbation theory and KdV equation, (ii) Toda lattice, (iii) a new approach based on the construction of functions which are adiabatic invariants with large probability in the Gibbs measure.
50#
發(fā)表于 2025-3-30 06:36:00 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-11 00:57
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
临朐县| 上饶市| 龙口市| 峨山| 庆安县| 如皋市| 西城区| 资溪县| 红桥区| 蓝山县| 大名县| 雷波县| 六盘水市| 渝北区| 神池县| 平舆县| 柯坪县| 正镶白旗| 永平县| 中超| 富裕县| 高州市| 怀柔区| 睢宁县| 连州市| 富民县| 德令哈市| 大余县| 佛山市| 合川市| 金阳县| 林周县| 壤塘县| 康乐县| 和政县| 尼木县| 兴仁县| 蒲江县| 察雅县| 淳化县| 富宁县|