找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Hamiltonian Dynamical Systems and Applications; Walter Craig Conference proceedings 20081st edition Springer Science+Business Media B.V. 2

[復制鏈接]
樓主: chondrocyte
31#
發(fā)表于 2025-3-26 23:35:17 | 只看該作者
32#
發(fā)表于 2025-3-27 01:48:49 | 只看該作者
33#
發(fā)表于 2025-3-27 06:42:23 | 只看該作者
The Physical Attractiveness Phenomenatablish the presence of these structures in a given near integrable systems or in systems for which good numerical information is available. We also discuss some quantitative features of the diffusion mechanisms such as time of diffusion, Hausdorff dimension of diffusing orbits, etc.
34#
發(fā)表于 2025-3-27 10:08:05 | 只看該作者
Edmund Drauglis,Robert I. Jaffeeundergoes substantial variation. Variational method has been shown a powerful tool for the study of Arnold diffusion of Hamiltonian systems convex in actions. In variational language, it amounts to construct an orbit connecting two different Aubry sets. This is the main content of the lecture notes.
35#
發(fā)表于 2025-3-27 16:50:52 | 只看該作者
36#
發(fā)表于 2025-3-27 20:42:50 | 只看該作者
https://doi.org/10.1007/978-1-349-81720-7 consider the problem in weighted Sobolev spaces, which comprise classical Sobolev spaces, Gevrey spaces, and analytic spaces. We show that the initial value problem is well posed in all spaces with subexponential growth of Fourier coefficients, and ‘a(chǎn)lmost well posed’ in spaces with exponential growth of Fourier coefficients.
37#
發(fā)表于 2025-3-27 22:54:51 | 只看該作者
38#
發(fā)表于 2025-3-28 04:59:46 | 只看該作者
39#
發(fā)表于 2025-3-28 08:56:59 | 只看該作者
40#
發(fā)表于 2025-3-28 10:58:32 | 只看該作者
Variational methods for the problem of Arnold diffusion,undergoes substantial variation. Variational method has been shown a powerful tool for the study of Arnold diffusion of Hamiltonian systems convex in actions. In variational language, it amounts to construct an orbit connecting two different Aubry sets. This is the main content of the lecture notes.
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 04:50
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
灌阳县| 宜兰县| 电白县| 辰溪县| 万全县| 神池县| 温泉县| 海南省| 蒙城县| 兴文县| 江西省| 晋城| 石柱| 华亭县| 原平市| 墨竹工卡县| 岢岚县| 宜城市| 石嘴山市| 大悟县| 承德市| 海门市| 叙永县| 江城| 义乌市| 岳阳县| 玛多县| 安乡县| 曲阜市| 福海县| 武川县| 长兴县| 澄迈县| 三原县| 焉耆| 白银市| 依兰县| 铜鼓县| 梁平县| 安顺市| 德庆县|