找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: ;

[復(fù)制鏈接]
樓主: Halloween
11#
發(fā)表于 2025-3-23 13:45:54 | 只看該作者
12#
發(fā)表于 2025-3-23 16:01:50 | 只看該作者
13#
發(fā)表于 2025-3-23 21:19:47 | 只看該作者
Riemannian and Pseudo Riemannian GeometryAs explained in the previous chapter we should distinguish terms like topological spaces, differential topology, differential geometry, algebraic topology and algebraic geometry.
14#
發(fā)表于 2025-3-24 01:31:07 | 只看該作者
15#
發(fā)表于 2025-3-24 03:57:12 | 只看該作者
Configuration Space Topology and Topological Conservation LawsWith formal notations on topological spaces, homotopy, homology and cohomology introduced in the first three chapters, we have taken up their applications in Chaps. .–..
16#
發(fā)表于 2025-3-24 09:42:10 | 只看該作者
Spin-Statistics Theorem, Low Dimensional Topology and GeometryWe saw in the previous chapter the role of topology in multiparticle systems of elementary particles and providing explanation for possible statistics.
17#
發(fā)表于 2025-3-24 12:21:49 | 只看該作者
Braid Group, Knots, Three ManifoldsWe introduced braids and their group structure in Chap. .. We briefly recollect here so that we can study how knots in three-dimensional space . arise from these braids.
18#
發(fā)表于 2025-3-24 18:47:47 | 只看該作者
19#
發(fā)表于 2025-3-24 20:49:14 | 只看該作者
3D Gravity and BTZ BlackholeThree-dimensional gravity is an excellent model for understanding several features of topological and quantum aspects of gravity. This is because in three-dimensional gravity we do not have propagating (dynamical) degrees of freedom. But topological aspects provide interesting features. There is one more reason to understand this model.
20#
發(fā)表于 2025-3-24 23:33:28 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-15 17:04
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
德昌县| 越西县| 沙湾县| 广南县| 玉溪市| 四子王旗| 德安县| 湾仔区| 平遥县| 资阳市| 丹棱县| 界首市| 股票| 巧家县| 开原市| 海晏县| 灵山县| 丽江市| 汉中市| 碌曲县| 新平| 麦盖提县| 乐山市| 岐山县| 甘泉县| 铁岭市| 集安市| 永福县| 老河口市| 玛沁县| 峨眉山市| 宁陵县| 横峰县| 尼勒克县| 宝应县| 醴陵市| 陇西县| 政和县| 长岭县| 米脂县| 乳山市|