找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: ;

[復制鏈接]
樓主: 貧血
11#
發(fā)表于 2025-3-23 11:58:33 | 只看該作者
12#
發(fā)表于 2025-3-23 17:51:52 | 只看該作者
,On a Model “Sum of Squares” Operator,We study the real analytic and Gevrey regularity of the solutions to a type of “sum of squares” model operator, see (1), in two variables and obtain a result in agreement with Treves conjecture.
13#
發(fā)表于 2025-3-23 20:01:43 | 只看該作者
Equality of Commutator Type and Levi Form Type for an ,-Dimensional Bundle,Let . be a smooth real hypersurface in ., and let . be an (.) dimensional subbundle of the CR tangent bundle of .. We prove that the commutator type and the Levi form type associated with . are equal to each other. This answers affirmatively the generalized D’Angelo Conjecture for an (.) dimensional subbundle of the CR tangent bundle.
14#
發(fā)表于 2025-3-24 01:50:05 | 只看該作者
15#
發(fā)表于 2025-3-24 05:57:07 | 只看該作者
16#
發(fā)表于 2025-3-24 09:25:45 | 只看該作者
17#
發(fā)表于 2025-3-24 11:45:43 | 只看該作者
Geometric Analysis of PDEs and Several Complex Variables978-3-031-69702-9Series ISSN 2524-6755 Series E-ISSN 2524-6763
18#
發(fā)表于 2025-3-24 17:35:16 | 只看該作者
https://doi.org/10.1007/978-3-658-30401-0nsion . at 0. The image of the Borel map is a subalgebra of the ring of formal power series .: However, the general structure of the image is not yet well understood. In all examples studied so far, the image is given by the tensor product of a ring of formal series with a ring of convergent series.
19#
發(fā)表于 2025-3-24 22:16:31 | 只看該作者
20#
發(fā)表于 2025-3-25 01:49:25 | 只看該作者
Star Actors in the Hollywood Renaissance hypersurfaces in complex manifolds and provide some new insight into the CR geometry of such hypersurfaces. Then we establish some new results for the two notions of flatness. Among other things, we prove there exists a family ., parameterized by the real numbers (and, hence, is uncountably infinit
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2025-10-6 20:20
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
荥经县| 东丽区| 莱州市| 龙海市| 广水市| 涟源市| 肇东市| 富民县| 新沂市| 德庆县| 永丰县| 平陆县| 彭水| 昂仁县| 永嘉县| 敖汉旗| 樟树市| 沾益县| 乌苏市| 谷城县| 宽甸| 泗水县| 岢岚县| 革吉县| 格尔木市| 彭泽县| 抚顺县| 玛沁县| 临清市| 古浪县| 铜鼓县| 景泰县| 平凉市| 常州市| 郓城县| 博湖县| 永定县| 井研县| 旺苍县| 邵东县| 连南|