找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: ;

[復(fù)制鏈接]
樓主: 難受
31#
發(fā)表于 2025-3-26 23:48:50 | 只看該作者
Programmieren von Mikrocomputernase, each .-module can thus also be seen as an .-module with an additional structure. We prove that the effective descent morphisms of rings are exactly the . ones: the injective morphisms, which remain injective when tensored with whatever .-module. The descent theorem for rings implies an analogous result for algebras.
32#
發(fā)表于 2025-3-27 01:59:03 | 只看該作者
33#
發(fā)表于 2025-3-27 09:19:19 | 只看該作者
34#
發(fā)表于 2025-3-27 13:12:41 | 只看該作者
35#
發(fā)表于 2025-3-27 15:10:34 | 只看該作者
Aspekte der Metapher in der Neuzeit,uivalence of categories between the category of profinite spaces and that of Boolean algebras. This link will make it possible to combine algebraic and topological aspects in the infinite-dimensional Galois theory of fields, but also in the Galois theory of rings.
36#
發(fā)表于 2025-3-27 19:15:46 | 只看該作者
37#
發(fā)表于 2025-3-28 01:54:11 | 只看該作者
The Galois Theorem of Grothendieckhe quotients of Gal[. : .], which is finite and viewed here as acting on itself. It is a classical result of the theory of group actions that these quotients are themselves in bijection with the subgroups of Gal[. : .].
38#
發(fā)表于 2025-3-28 04:13:22 | 只看該作者
Profinite Topological Spacesuivalence of categories between the category of profinite spaces and that of Boolean algebras. This link will make it possible to combine algebraic and topological aspects in the infinite-dimensional Galois theory of fields, but also in the Galois theory of rings.
39#
發(fā)表于 2025-3-28 09:53:07 | 只看該作者
40#
發(fā)表于 2025-3-28 11:20:08 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-16 05:27
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
建德市| 南岸区| 陇川县| 舞阳县| 冀州市| 信阳市| 福贡县| 辽宁省| 二连浩特市| 丹凤县| 峨眉山市| 合水县| 长泰县| 韩城市| 伊通| 竹溪县| 庐江县| 花莲县| 手游| 繁昌县| 来安县| 乌兰县| 万全县| 黑河市| 宁波市| 涿鹿县| 乌兰察布市| 梅州市| 蓬安县| 拜城县| 探索| 读书| 肇庆市| 元谋县| 丹寨县| 云龙县| 合江县| 龙山县| 绍兴市| 商南县| 长海县|