找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: ;

[復(fù)制鏈接]
樓主: 美麗動人
31#
發(fā)表于 2025-3-26 23:26:44 | 只看該作者
32#
發(fā)表于 2025-3-27 02:47:21 | 只看該作者
33#
發(fā)表于 2025-3-27 05:54:26 | 只看該作者
34#
發(fā)表于 2025-3-27 12:48:02 | 只看該作者
35#
發(fā)表于 2025-3-27 15:42:45 | 只看該作者
Social Systems and Learning Systemsations. We intend to apply various modeling techniques to extract models from the data. Although we have not yet discussed any modeling technique in greater detail (see the following chapters), we have already glimpsed at some fundamental techniques and potential pitfalls in the previous chapter. Be
36#
發(fā)表于 2025-3-27 20:08:07 | 只看該作者
Richard S. Ostfeld,Lorrie L. Klosterman the identification of areas that exceptionally deviate from the remainder. They provide answers to questions such as: Does it naturally subdivide into groups? How do attributes depend on each other? Are there certain conditions leading to exceptions from the average behavior? The chapter provides a
37#
發(fā)表于 2025-3-27 22:32:53 | 只看該作者
Reflection, Theory and Language,rder to group similar objects. In this chapter we will discuss methods that address a very different setup: Instead of finding structure in a data set, we are now focusing on methods that find explanations for an unknown dependency within the data. Such a search for a dependency usually focuses on a
38#
發(fā)表于 2025-3-28 05:55:04 | 只看該作者
https://doi.org/10.1007/978-3-030-78324-2e discussed methods for basically the same purpose, the methods in this chapter yield models that do not help much to explain the data or even dispense with models altogether. Nevertheless, they can be useful, namely if the main goal is good prediction accuracy rather than an intuitive and interpret
39#
發(fā)表于 2025-3-28 08:29:36 | 只看該作者
Testing the Explanatory Value of Naturereted to gain new insights for feature construction (or even data acquisition). What we have ignored so far is the deployment of the models into production as well as their continued monitoring and potentially even automatic updating.
40#
發(fā)表于 2025-3-28 12:54:22 | 只看該作者
Guide to Intelligent Data Science978-3-030-45574-3Series ISSN 1868-0941 Series E-ISSN 1868-095X
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-11 11:32
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
霞浦县| 兴文县| 佛坪县| 永善县| 清徐县| 屏东市| 东乡族自治县| 会理县| 长春市| 宕昌县| 竹北市| 五台县| 石城县| 白河县| 溧水县| 吉首市| 绍兴县| 罗甸县| 牙克石市| 剑阁县| 石柱| 大城县| 进贤县| 荃湾区| 远安县| 浪卡子县| 隆化县| 登封市| 平陆县| 漳浦县| 汝城县| 息烽县| 勃利县| 汉川市| 类乌齐县| 焉耆| 明水县| 尼木县| 吴桥县| 平定县| 桐乡市|