找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: ;

[復(fù)制鏈接]
樓主: Blandishment
11#
發(fā)表于 2025-3-23 12:41:12 | 只看該作者
Non-orientable and orientable regular maps,ble case (see the References). We want to bring about some new aspects, which also lead to interesting applications..It is well known that the closed orientable surface of characteristic 2. is a regular two-fold cover of the closed non-orientable surface of characteristic .. Thus, every non-orientab
12#
發(fā)表于 2025-3-23 17:52:47 | 只看該作者
13#
發(fā)表于 2025-3-23 21:40:14 | 只看該作者
14#
發(fā)表于 2025-3-24 00:06:18 | 只看該作者
Albrecht Neftel,Andreas Sigg,Peter Jacobble case (see the References). We want to bring about some new aspects, which also lead to interesting applications..It is well known that the closed orientable surface of characteristic 2. is a regular two-fold cover of the closed non-orientable surface of characteristic .. Thus, every non-orientab
15#
發(fā)表于 2025-3-24 04:41:59 | 只看該作者
16#
發(fā)表于 2025-3-24 07:07:30 | 只看該作者
17#
發(fā)表于 2025-3-24 11:50:44 | 只看該作者
A. Iqbal,B. Medinger,R. B. McKayis transcendental as an element of .. Unlike the groupoid cases ([1], [5]) and the case when ..+..+···+..=1 ([2]), the basis problems for the equational theories of the above .-groupoids or the above classes are not so simple.
18#
發(fā)表于 2025-3-24 15:07:01 | 只看該作者
On n-groupoids defined on fields,is transcendental as an element of .. Unlike the groupoid cases ([1], [5]) and the case when ..+..+···+..=1 ([2]), the basis problems for the equational theories of the above .-groupoids or the above classes are not so simple.
19#
發(fā)表于 2025-3-24 22:02:20 | 只看該作者
Groups with many elliptic subgroups, G be a finitely generated solvable group. It is shown that . has many elliptic pairs of subgroups if and only if . is finite-by-nilpotent. It is also shown that if . is finitely generated, torsion-free and residually finite .-group, for some prime ., then . has many elliptic pairs of subgroups if and only if . is nilpotent.
20#
發(fā)表于 2025-3-24 23:37:45 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 03:04
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
平顺县| 绥德县| 鲜城| 东安县| 都兰县| 凉山| 南漳县| 吉首市| 县级市| 双鸭山市| 鹤岗市| 银川市| 吉林省| 西藏| 新和县| 遂平县| 咸阳市| 定日县| 基隆市| 新丰县| 青州市| 中超| 潞西市| 望谟县| 阜宁县| 民权县| 柘荣县| 银川市| 麻江县| 赤峰市| 八宿县| 凭祥市| 牡丹江市| 尖扎县| 津南区| 四川省| 四子王旗| 宁陕县| 贺州市| 内乡县| 卓尼县|