找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: ;

[復(fù)制鏈接]
樓主: irritants
21#
發(fā)表于 2025-3-25 04:33:18 | 只看該作者
22#
發(fā)表于 2025-3-25 11:18:12 | 只看該作者
23#
發(fā)表于 2025-3-25 13:00:33 | 只看該作者
24#
發(fā)表于 2025-3-25 17:26:15 | 只看該作者
25#
發(fā)表于 2025-3-25 20:19:44 | 只看該作者
Perspectives of Photoemission Studies,We describe some recent results concerning regular orbits of quasisimple groups in coprime representations, and discuss an application to the .(.)-problem in modular representation theory.
26#
發(fā)表于 2025-3-26 00:22:06 | 只看該作者
27#
發(fā)表于 2025-3-26 06:14:29 | 只看該作者
Photoelectronic Imaging DevicesIn this note we discuss some recent results on the subgroup structure of exceptional groups obtained jointly with Martin Liebeck and some related projects in progress.
28#
發(fā)表于 2025-3-26 11:09:01 | 只看該作者
Analoge Informationsverarbeitung,A survey is given on embeddings in finite projective spaces of generalized polygons, polar spaces, partial quadrangles, partial geometries, semipartial geometries, dual semipartialgeometries and (0, α)-geometries.
29#
發(fā)表于 2025-3-26 14:46:34 | 只看該作者
Geschichtliche Entwicklung des Verfahrens,We give a geometric characterization of two classes of geometries related to the spin representation of the groups of type ... These geometries appear as quotient geometries of point-line spaces obtained from an ..-building by removing a geometric hyperplane.
30#
發(fā)表于 2025-3-26 19:54:03 | 只看該作者
The Non-canonical Gluings of two Affine Spaces,In this paper we determine the flag-transitive non-canonical gluings of two isomorphic desarguesian affine spaces. It turns out that there are fifteen sporadic examples and two infinite series. Moreover, we determine the universal covers of the fifteen sporadic gluings and of the canonical gluing.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 02:15
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
洛阳市| 佛坪县| 依兰县| 尼木县| 九江县| 宾阳县| 临泉县| 古交市| 抚远县| 宁乡县| 阿拉善左旗| 库车县| 长海县| 罗江县| 沭阳县| 济阳县| 湾仔区| 杨浦区| 胶州市| 墨竹工卡县| 阳原县| 安多县| 海盐县| 信丰县| 上林县| 藁城市| 青岛市| 门头沟区| 杭州市| 龙口市| 泗洪县| 赤峰市| 栾城县| 綦江县| 安远县| 开阳县| 铜陵市| 尼勒克县| 达日县| 濮阳市| 桐城市|