找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: ;

[復(fù)制鏈接]
樓主: fitful
31#
發(fā)表于 2025-3-26 21:22:18 | 只看該作者
PSL(2) over Rings of Imaginary Quadratic Integers,l series of arithmetic examples of such groups. This chapter will also fix the notation concerning imaginary quadratic number fields to be used in the following chapters. For the usual facts about algebraic number theory we refer to Lang (1993), Hecke (1923) or Hasse (1964). A useful little table of
32#
發(fā)表于 2025-3-27 01:42:23 | 只看該作者
33#
發(fā)表于 2025-3-27 05:46:23 | 只看該作者
Integral Binary Hermitian Forms,of binary hermitian forms as described for example in Bianchi (1892). Eventually our considerations lead to Humbert’s computation of the covolume of .(2, Thuong) where . is the ring of integers in an imaginary quadratic number field. The work of Humbert on hermitian forms is contained in his papers
34#
發(fā)表于 2025-3-27 10:31:31 | 只看該作者
Photodegradation of Foods and Beverages,genpackets for Δ? following Roelcke (1956a), (1966), (1967). Section 2 contains a quick treatment of the theory of eigenpackets. It is included here since nowadays textbooks treat the spectral theory of unbounded operators usually via spectral families.
35#
發(fā)表于 2025-3-27 15:11:03 | 只看該作者
36#
發(fā)表于 2025-3-27 20:51:53 | 只看該作者
37#
發(fā)表于 2025-3-28 01:32:34 | 只看該作者
38#
發(fā)表于 2025-3-28 03:46:49 | 只看該作者
39#
發(fā)表于 2025-3-28 07:57:44 | 只看該作者
40#
發(fā)表于 2025-3-28 12:02:54 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-14 17:14
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
开平市| 武城县| 手机| 武功县| 兰考县| 神农架林区| 广南县| 岑巩县| 嵩明县| 两当县| 新乡县| 桂阳县| 扶绥县| 台前县| 沈阳市| 延安市| 芜湖县| 南康市| 墨竹工卡县| 新密市| 左云县| 澎湖县| 老河口市| 壶关县| 铜梁县| 当阳市| 米泉市| 从化市| 平昌县| 昌吉市| 格尔木市| 东阿县| 宜州市| 苏尼特左旗| 晋州市| 荣成市| 思南县| 股票| 卓资县| 来宾市| 定安县|