找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: ;

[復(fù)制鏈接]
樓主: informed
11#
發(fā)表于 2025-3-23 10:15:42 | 只看該作者
Hypercentral Groups and Rings,group ring ... Our main aim is to prove Roseblade’s theorems that .. is a hypercentral ring if and only if . is a hypercentral group and that .. is a polycentral ring if and only if . is a finitely generated nilpotent group. We must start by explaining these terms.
12#
發(fā)表于 2025-3-23 15:35:41 | 只看該作者
Groups Acting on Finitely Generated Commutative Rings,ated by the image of?.. Then . is a finitely generated commutative ring and . acts on . by conjugation and normalizes the image of?.. We wish to work by induction. It is not sufficient to know about the group rings .(./.).../(.?1).. of ./. and .. of?., say by induction on the Hirsch number. We also
13#
發(fā)表于 2025-3-23 21:58:16 | 只看該作者
14#
發(fā)表于 2025-3-24 01:10:07 | 只看該作者
15#
發(fā)表于 2025-3-24 06:14:34 | 只看該作者
16#
發(fā)表于 2025-3-24 07:39:18 | 只看該作者
Phase-Transfer Catalysis: Fundamentals II,..All our rings will have an identity and all our modules will be unital. Our modules will sometimes be right, sometimes be left and sometimes have actions on both sides (e.g. bimodules). The following is an analogue of?2.3.
17#
發(fā)表于 2025-3-24 14:16:32 | 只看該作者
18#
發(fā)表于 2025-3-24 18:19:01 | 只看該作者
19#
發(fā)表于 2025-3-24 21:24:31 | 只看該作者
The Structure of Modules over Polycyclic Groups,In many ways this chapter is the culmination of much of the work we have done in Chaps.?6, 7 and?8. We are especially interested here in the structure of a finitely generated module over a polycyclic group. We then use this information to prove that a finitely generated abelian-by-polycyclic-by-finite group is residually finite.
20#
發(fā)表于 2025-3-25 00:27:50 | 只看該作者
Gerd Neumann,Axel Sch?fer,Werner Mendlinggroup ring ... Our main aim is to prove Roseblade’s theorems that .. is a hypercentral ring if and only if . is a hypercentral group and that .. is a polycentral ring if and only if . is a finitely generated nilpotent group. We must start by explaining these terms.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-14 12:11
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
鸡西市| 孝昌县| 颍上县| 永清县| 桐乡市| 环江| 沈丘县| 常山县| 五家渠市| 土默特右旗| 玛曲县| 高州市| 原阳县| 西安市| 屏南县| 墨江| 休宁县| 青铜峡市| 德清县| 阜康市| 黄山市| 沾化县| 宁南县| 涞水县| 卢氏县| 旬阳县| 凤翔县| 灵武市| 鄂伦春自治旗| 新蔡县| 蒙山县| 嵩明县| 玛曲县| 青神县| 美姑县| 元谋县| 德化县| 平乡县| 香河县| 和静县| 萝北县|