找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: ;

[復(fù)制鏈接]
樓主: fundoplication
11#
發(fā)表于 2025-3-23 11:24:07 | 只看該作者
12#
發(fā)表于 2025-3-23 16:37:13 | 只看該作者
13#
發(fā)表于 2025-3-23 18:39:12 | 只看該作者
Duality theorems in conformal geometry,For conformally flat Riemannian manifolds of dimension n ≥ 3 ,we describe an explicit resolution of the sheaf Θ. of conformal Killing vector fields which is formally self-adjoint, and we deduce a duality theorem for the cohomology of X with values inΘ..
14#
發(fā)表于 2025-3-24 01:29:34 | 只看該作者
15#
發(fā)表于 2025-3-24 04:12:36 | 只看該作者
The DeSitter symmetry of the Dirac equation,The SO(4,1) symmetry of the Dirac equation is constructed. It is realized on the full space of solutions of the Dirac equation. Generalizations and possible physical implications are noted.
16#
發(fā)表于 2025-3-24 07:49:51 | 只看該作者
17#
發(fā)表于 2025-3-24 11:19:26 | 只看該作者
A new look at group orthogonality relations,Group orthogonality relations are presented in various coordinate-free, and possibly new, guises; it is . assumed that the ground field is algebraically closed. One of the more unlikely guises is used to give a basis-free proof of the “generalized Frobenius-Schur criterion” for the Wigner type of a corepresentation.
18#
發(fā)表于 2025-3-24 16:11:48 | 只看該作者
19#
發(fā)表于 2025-3-24 21:21:29 | 只看該作者
,The invariants of the nondegenerate representations of the group of the pseudo — orthogonal matriceThe invariants of the nondegenerate representations of the group of pseudo-orthogonal matrices SO(p,l) are constructed.
20#
發(fā)表于 2025-3-25 02:07:23 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-15 17:04
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
得荣县| 特克斯县| 九寨沟县| 澄江县| 恩平市| 攀枝花市| 桃源县| 张家口市| 盱眙县| 东丰县| 岳池县| 来凤县| 陆丰市| 法库县| 临夏市| 南宫市| 子长县| 长垣县| 静海县| 桃江县| 阿克苏市| 泸州市| 清流县| 新野县| 新余市| 西安市| 繁昌县| 启东市| 淅川县| 德钦县| 科技| 桦南县| 岑溪市| 南宁市| 道孚县| 昌宁县| 上林县| 正阳县| 英山县| 保靖县| 县级市|