找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: ;

[復制鏈接]
樓主: 偏差
11#
發(fā)表于 2025-3-23 10:22:30 | 只看該作者
12#
發(fā)表于 2025-3-23 16:48:46 | 只看該作者
Foundation of Representation Theory of Lie Group and Lie Algebra, the case of projective representations. It also prepares several concepts for Chap.?.. Also, this chapter introduces complex Lie groups and complex Lie algebras, which are helpful for real Lie groups and real Lie algebras.
13#
發(fā)表于 2025-3-23 21:22:45 | 只看該作者
14#
發(fā)表于 2025-3-23 22:19:01 | 只看該作者
Representation of General Lie Groups and General Lie Algebras,heory. As such special representation has analogies with representations of a compact Lie group, they can be more easily understood than the general case. Since this chapter is composed of very advanced topics and such sections are labeled with *, the reader can omit this chapter in the first time.
15#
發(fā)表于 2025-3-24 05:10:12 | 只看該作者
D. L. Andrews,M. R. S. McCoustray, measurement, state, composite system, many-body system, and entanglement. It also prepares mathematical notations for quantum systems. Although these notations are specified to quantum systems, they are helpful for group representation. Hence, this book consistently deals with representation theory based on these notations.
16#
發(fā)表于 2025-3-24 06:50:53 | 只看該作者
Mathematical Foundation for Quantum System,y, measurement, state, composite system, many-body system, and entanglement. It also prepares mathematical notations for quantum systems. Although these notations are specified to quantum systems, they are helpful for group representation. Hence, this book consistently deals with representation theory based on these notations.
17#
發(fā)表于 2025-3-24 11:07:27 | 只看該作者
18#
發(fā)表于 2025-3-24 16:38:51 | 只看該作者
19#
發(fā)表于 2025-3-24 22:45:56 | 只看該作者
Foundation of Representation Theory of Lie Group and Lie Algebra,epresentations of Lie groups and Lie algebras by combining the contents of Chap.?.. Then, it introduces the Fourier transform for Lie groups including the case of projective representations. It also prepares several concepts for Chap.?.. Also, this chapter introduces complex Lie groups and complex L
20#
發(fā)表于 2025-3-25 01:44:16 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-15 13:38
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
湖南省| 涿鹿县| 松溪县| 饶阳县| 正定县| 汉中市| 涡阳县| 南皮县| 武清区| 永胜县| 克东县| 兴仁县| 寿阳县| 淮南市| 米林县| 密山市| 吉林省| 万全县| 正蓝旗| 县级市| 莎车县| 建始县| 舟曲县| 丰台区| 达拉特旗| 阿拉善左旗| 尖扎县| 泗阳县| 天峨县| 松溪县| 大冶市| 桂东县| 三亚市| 邛崃市| 冷水江市| 托克逊县| 阳东县| 平昌县| 洱源县| 万源市| 冕宁县|