找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: ;

[復(fù)制鏈接]
樓主: 偏差
11#
發(fā)表于 2025-3-23 10:22:30 | 只看該作者
12#
發(fā)表于 2025-3-23 16:48:46 | 只看該作者
Foundation of Representation Theory of Lie Group and Lie Algebra, the case of projective representations. It also prepares several concepts for Chap.?.. Also, this chapter introduces complex Lie groups and complex Lie algebras, which are helpful for real Lie groups and real Lie algebras.
13#
發(fā)表于 2025-3-23 21:22:45 | 只看該作者
14#
發(fā)表于 2025-3-23 22:19:01 | 只看該作者
Representation of General Lie Groups and General Lie Algebras,heory. As such special representation has analogies with representations of a compact Lie group, they can be more easily understood than the general case. Since this chapter is composed of very advanced topics and such sections are labeled with *, the reader can omit this chapter in the first time.
15#
發(fā)表于 2025-3-24 05:10:12 | 只看該作者
D. L. Andrews,M. R. S. McCoustray, measurement, state, composite system, many-body system, and entanglement. It also prepares mathematical notations for quantum systems. Although these notations are specified to quantum systems, they are helpful for group representation. Hence, this book consistently deals with representation theory based on these notations.
16#
發(fā)表于 2025-3-24 06:50:53 | 只看該作者
Mathematical Foundation for Quantum System,y, measurement, state, composite system, many-body system, and entanglement. It also prepares mathematical notations for quantum systems. Although these notations are specified to quantum systems, they are helpful for group representation. Hence, this book consistently deals with representation theory based on these notations.
17#
發(fā)表于 2025-3-24 11:07:27 | 只看該作者
18#
發(fā)表于 2025-3-24 16:38:51 | 只看該作者
19#
發(fā)表于 2025-3-24 22:45:56 | 只看該作者
Foundation of Representation Theory of Lie Group and Lie Algebra,epresentations of Lie groups and Lie algebras by combining the contents of Chap.?.. Then, it introduces the Fourier transform for Lie groups including the case of projective representations. It also prepares several concepts for Chap.?.. Also, this chapter introduces complex Lie groups and complex L
20#
發(fā)表于 2025-3-25 01:44:16 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-15 19:47
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
内乡县| 定陶县| 太原市| 宁远县| 保康县| 东阿县| 浦东新区| 锦屏县| 南投市| 广河县| 微山县| 额尔古纳市| 清流县| 通州市| 伊宁市| 郧西县| 外汇| 奉新县| 民勤县| 怀仁县| 洛扎县| 靖江市| 冷水江市| 古蔺县| 阿合奇县| 正镶白旗| 怀远县| 漳平市| 凤山县| 六枝特区| 运城市| 沛县| 汉沽区| 沂南县| 临朐县| 宁波市| 临漳县| 轮台县| 鹤峰县| 开化县| 吉林省|