找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: ;

[復(fù)制鏈接]
樓主: Scuttle
11#
發(fā)表于 2025-3-23 12:13:10 | 只看該作者
12#
發(fā)表于 2025-3-23 16:40:09 | 只看該作者
Stability of Inertial Manifolds equation. More precisely, we use the Gromov-Hausdorff distances between two inertial manifolds and two dynamical systems to consider the continuous dependence of the inertial manifolds and the stability of the dynamical systems on inertial manifolds induced by reaction-diffusion equations under perturbations of the domain and equation.
13#
發(fā)表于 2025-3-23 18:13:42 | 只看該作者
14#
發(fā)表于 2025-3-24 00:49:29 | 只看該作者
Praxiserfahrungen und Reflexionen,When simulating a given system, it is important to know under which conditions approximated trajectories may be tracked by real ones. If this is the case for all approximated trajectories, then we say that the system has the ..
15#
發(fā)表于 2025-3-24 02:37:02 | 只看該作者
Partnerschaften von NGOs und UnternehmenChafee and Infante (Appl Anal 4:17–37, 1974) introduced the equation (nowadays called .) . where .?>?0 and . is a .. function such that . Moreover, we assume here that . satisfies the dissipativity condition, namely,
16#
發(fā)表于 2025-3-24 09:44:51 | 只看該作者
17#
發(fā)表于 2025-3-24 13:59:36 | 只看該作者
Shadowing from the Gromov-Hausdorff ViewpointWhen simulating a given system, it is important to know under which conditions approximated trajectories may be tracked by real ones. If this is the case for all approximated trajectories, then we say that the system has the ..
18#
發(fā)表于 2025-3-24 18:46:39 | 只看該作者
19#
發(fā)表于 2025-3-24 19:31:34 | 只看該作者
Gromov-Hausdorff Stability of Dynamical Systems and Applications to PDEs978-3-031-12031-2Series ISSN 1660-8046 Series E-ISSN 1660-8054
20#
發(fā)表于 2025-3-25 00:42:52 | 只看該作者
Gromov-Hausdorff Stability of Dynamical Systems and Applications to PDEs
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 16:23
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
太仆寺旗| 盐津县| 怀集县| 通化市| 黔西| 九江县| 富源县| 澳门| 竹山县| 尉犁县| 贵港市| 霍山县| 柯坪县| 滕州市| 芷江| 长丰县| 泾川县| 兴国县| 昌吉市| 鸡西市| 大渡口区| 吉水县| 从江县| 民和| 通河县| 百色市| 屏东县| 丰县| 屏南县| 通山县| 措勤县| 平乡县| 长岭县| 兴国县| 麻城市| 夹江县| 永仁县| 镇坪县| 麻阳| 个旧市| 高淳县|