找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: ;

[復(fù)制鏈接]
樓主: odometer
11#
發(fā)表于 2025-3-23 09:44:20 | 只看該作者
12#
發(fā)表于 2025-3-23 14:27:11 | 只看該作者
13#
發(fā)表于 2025-3-23 21:46:14 | 只看該作者
Green‘s Functions in Quantum Physics978-3-540-28841-1Series ISSN 0171-1873 Series E-ISSN 2197-4179
14#
發(fā)表于 2025-3-23 23:34:45 | 只看該作者
https://doi.org/10.1007/978-3-663-14577-6In this chapter, the time-independent Green’s functions are defined, their main properties are presented, methods for their calculation are briefly discussed, and their use in problems of physical interest is summarized.
15#
發(fā)表于 2025-3-24 05:54:15 | 只看該作者
https://doi.org/10.1007/978-3-663-08810-3The Green’s functions corresponding to linear partial differential equations of first and second order in time are defined; their main properties and uses are presented.
16#
發(fā)表于 2025-3-24 08:07:32 | 只看該作者
17#
發(fā)表于 2025-3-24 10:49:54 | 只看該作者
18#
發(fā)表于 2025-3-24 15:21:38 | 只看該作者
Time-Dependent Green’s FunctionsThe Green’s functions corresponding to linear partial differential equations of first and second order in time are defined; their main properties and uses are presented.
19#
發(fā)表于 2025-3-24 21:55:23 | 只看該作者
Physical Significance of ,. Application to the Free-Particle CaseThe general theory developed in Chap. 1 can be applied directly to the time-independent one-particle Schr?dinger equation by making the substitutions .(.)→?(.), λ → ., where ?(.) is the Hamiltonian. The formalism presented in Chap. 2, Sects. 2.1,2.2 is applicable to the time-dependent one-particle Schr?dinger equation.
20#
發(fā)表于 2025-3-25 02:02:22 | 只看該作者
Auftragsplanung und -steuerung,nctions like the conductivity. The poles of an appropriate analytic continuation of . in the complex .-plane can be interpreted as the energy (the real part of the pole) and the inverse lifetime (the imaginary part of the pole) of quasiparticles. The latter are entities that allow us to map an interacting system to a noninteracting one.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 08:22
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
连城县| 邵阳县| 樟树市| 哈尔滨市| 尉氏县| 黄平县| 应城市| 邹平县| 阜康市| 西昌市| 长汀县| 汶上县| 定襄县| 平武县| 易门县| 崇义县| 沽源县| 应城市| 仁化县| 海伦市| 洪雅县| 满洲里市| 德令哈市| 合肥市| 东莞市| 凉山| 五大连池市| 集安市| 竹山县| 谷城县| 平舆县| 贡嘎县| 林西县| 铁力市| 宜春市| 延边| 临城县| 高密市| 雷波县| 吴川市| 孝感市|