找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: ;

[復(fù)制鏈接]
樓主: 搭話
11#
發(fā)表于 2025-3-23 10:35:04 | 只看該作者
Twisted Duality, Cycle Family Graphs, and Embedded Graph Equivalence,ality? (2) How is a hierarchy of graph equivalences captured by a hierarchy of twisted dualities? We construct cycle family graphs and show that they fully characterise all twisted duals with a given (abstract) medial graph, and use this to answer Question 1. For Question 2, we give a hierarchy of g
12#
發(fā)表于 2025-3-23 15:12:34 | 只看該作者
Interactions with Graph Polynomials,n with the topological transition polynomial of Ellis-Monaghan and Moffatt (Trans. Amer. Math. Soc., ., 1529–1569, 2012), which interacts with twisted duality in a particularly natural way, leading to a generalised duality identity, and a three term contraction-deletion relation. The topological tra
13#
發(fā)表于 2025-3-23 21:25:40 | 只看該作者
14#
發(fā)表于 2025-3-23 23:53:41 | 只看該作者
15#
發(fā)表于 2025-3-24 03:30:48 | 只看該作者
https://doi.org/10.1007/978-3-658-07627-6ving that Petriality and geometric duality result from local operations on each edge of an embedded graph. These local operations applied to subsets of the edge set result in partial Petrality and partial duality. We provide constructions for partial duals and partial Petrials in various realisation
16#
發(fā)表于 2025-3-24 08:55:26 | 只看該作者
17#
發(fā)表于 2025-3-24 13:05:29 | 只看該作者
https://doi.org/10.1007/978-3-658-09911-4n with the topological transition polynomial of Ellis-Monaghan and Moffatt (Trans. Amer. Math. Soc., ., 1529–1569, 2012), which interacts with twisted duality in a particularly natural way, leading to a generalised duality identity, and a three term contraction-deletion relation. The topological tra
18#
發(fā)表于 2025-3-24 16:38:53 | 只看該作者
19#
發(fā)表于 2025-3-24 19:00:42 | 只看該作者
https://doi.org/10.1007/978-3-642-34775-7ned rotation systems. It covers Petrie duals, geometric duals, medial graphs and Tait graphs; and the relations among them. These definitions and relations motivate much of the work presented later in the monograph.
20#
發(fā)表于 2025-3-25 02:13:54 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 12:53
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
湟源县| 邹平县| 汤阴县| 德格县| 邳州市| 蓬莱市| 道真| 扶绥县| 武乡县| 株洲县| 清水河县| 望都县| 黄山市| 屏东县| 乐昌市| 祁阳县| 靖远县| 闻喜县| 昌邑市| 吉安市| 慈溪市| 建昌县| 兰溪市| 正阳县| 孟津县| 龙里县| 安新县| 凌云县| 新乡县| 兴义市| 伊金霍洛旗| 柳州市| 喀喇沁旗| 双柏县| 霍邱县| 浦江县| 泗水县| 增城市| 伊宁县| 凤翔县| 陵水|