找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: ;

[復(fù)制鏈接]
樓主: patch-test
11#
發(fā)表于 2025-3-23 12:49:04 | 只看該作者
Enhancing Cell Detection in?Histopathology Images: A ViT-Based U-Net Approachckbone, intending to enhance its suitability for our specific task. Our approach achieves highly promising results in cell detection on the OCELOT dataset, with an F1-detection score of 0.7558, as indicated by the preliminary results on the validation set. What’s more, we achieved . place on the off
12#
發(fā)表于 2025-3-23 14:12:40 | 只看該作者
13#
發(fā)表于 2025-3-23 20:37:45 | 只看該作者
https://doi.org/10.1007/978-981-13-1462-9sion tasks, as well as continuous adjacency matrices, and propose a lightweight CCNS distance for discrete and continuous adjacency matrices. We show the correlation of these metrics with model performance on different medical population graphs and under different learning settings, using the TADPOL
14#
發(fā)表于 2025-3-24 01:10:32 | 只看該作者
https://doi.org/10.1007/978-3-319-27156-97 subjects) and OASIS3 (771 subjects). The proposed model demonstrates the highest performance compared to the existing machine-learning algorithms we tested, including classical methods and (graph and non-graph) deep learning. We provide a detailed analysis of each component of our model.
15#
發(fā)表于 2025-3-24 03:20:32 | 只看該作者
16#
發(fā)表于 2025-3-24 06:43:47 | 只看該作者
17#
發(fā)表于 2025-3-24 14:00:30 | 只看該作者
18#
發(fā)表于 2025-3-24 16:18:38 | 只看該作者
https://doi.org/10.1007/978-981-13-0508-5e graph representation. We showcase the efficacy of our methodology on the BRACS dataset where our algorithm generates superior representations compared to other self-supervised graph representation learning algorithms and comes close to pathologists and supervised learning algorithms. The code and
19#
發(fā)表于 2025-3-24 20:36:18 | 只看該作者
20#
發(fā)表于 2025-3-25 02:42:50 | 只看該作者
https://doi.org/10.1007/978-1-349-19814-6ormer architecture for modeling the intricate relationships within tissue and cell graphs. Our model demonstrates superior efficiency in terms of parameter count and achieves higher accuracy compared to the transformer-based state-of-the-art approach on three publicly available breast cancer dataset
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 12:29
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
府谷县| 稷山县| 葵青区| 湖南省| 郧西县| 敦化市| 太仓市| 巨鹿县| 云南省| 山丹县| 弥勒县| 瑞安市| 安阳市| 深泽县| 鹿邑县| 牙克石市| 桃园县| 奉化市| 四子王旗| 富顺县| 广河县| 东方市| 威信县| 天水市| 江门市| 福海县| 兴隆县| 南丹县| 平罗县| 望奎县| 河南省| 昆明市| 和田县| 井陉县| 杨浦区| 东至县| 赣州市| 大埔县| 天全县| 马关县| 永靖县|