找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: ;

[復(fù)制鏈接]
樓主: risky-drinking
31#
發(fā)表于 2025-3-26 21:19:58 | 只看該作者
Multi-modal Brain Connectivity Study Using Deep Collaborative Learningning correlation analysis and label information using deep networks, which may lead to better performance both for classification/prediction and for correlation detection. Results demonstrated the out-performance of DCL over other conventional models in terms of classification accuracy. Experiments
32#
發(fā)表于 2025-3-27 04:06:56 | 只看該作者
33#
發(fā)表于 2025-3-27 07:31:45 | 只看該作者
Cross-diagnostic Prediction of Dimensional Psychiatric Phenotypes in Anorexia Nervosa and Body Dysmodict dimensional phenotypes of insight and obsession/compulsions across a sample of unmedicated adults with BDD (n?=?29) and weight-restored AN (n?=?24). The multivariate model that included fMRI and white matter connectivity data performed significantly better in predicting both insight and obsessi
34#
發(fā)表于 2025-3-27 09:58:56 | 只看該作者
35#
發(fā)表于 2025-3-27 15:12:04 | 只看該作者
36#
發(fā)表于 2025-3-27 18:59:30 | 只看該作者
37#
發(fā)表于 2025-3-27 22:04:03 | 只看該作者
https://doi.org/10.1007/978-1-4757-9450-2eatures compared to the undirected ones for recognizing the cognitive processes. The representation power of the suggested brain networks are tested in a task-fMRI dataset of Human Connectome Project and a Complex Problem Solving dataset.
38#
發(fā)表于 2025-3-28 05:21:42 | 只看該作者
https://doi.org/10.1007/978-1-4615-7514-6cores at future time-points. We use a sigmoidal function to model latent disease progression, which gives rise to clinical observations in our generative model. We implemented an approximate Bayesian inference strategy on the proposed model to estimate the parameters on data from a large population
39#
發(fā)表于 2025-3-28 06:26:46 | 只看該作者
40#
發(fā)表于 2025-3-28 11:58:20 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 13:25
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
吕梁市| 鹤庆县| 朝阳县| 秭归县| 南昌县| 英超| 南皮县| 札达县| 略阳县| 长丰县| 浦城县| 宁波市| 永和县| 峨山| 玉林市| 湘潭市| 沭阳县| 扎鲁特旗| 称多县| 博罗县| 芦溪县| 额尔古纳市| 房山区| 彭山县| 北海市| 通州市| 拜城县| 资兴市| 临汾市| 宣汉县| 东乌| 广丰县| 合作市| 神农架林区| 余干县| 茶陵县| 武山县| 东平县| 会理县| 沁水县| 炉霍县|