找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: ;

[復制鏈接]
樓主: Thoracic
11#
發(fā)表于 2025-3-23 13:18:03 | 只看該作者
12#
發(fā)表于 2025-3-23 17:09:30 | 只看該作者
Graphs from Total Graphs,In this chapter, we study certain graphs obtained from total graphs of commutative rings. More specifically, we concentrate on the total graph without the zero element, the complement of the total graph, and its generalizations.
13#
發(fā)表于 2025-3-23 19:51:26 | 只看該作者
14#
發(fā)表于 2025-3-24 00:18:21 | 只看該作者
15#
發(fā)表于 2025-3-24 03:08:33 | 只看該作者
16#
發(fā)表于 2025-3-24 07:23:53 | 只看該作者
https://doi.org/10.1007/978-81-322-1865-4ph on a surface so that no two edges cross, an intuitive geometric problem that can be enriched by specifying symmetries or combinatorial side-conditions. Graphs on surfaces form a natural link between discrete and continuous mathematics.
17#
發(fā)表于 2025-3-24 10:53:46 | 只看該作者
https://doi.org/10.1007/978-981-19-2370-8graph. In variation to this, a graph using the addition of the ring is constructed and is called the total graph of commutative rings. The next several chapters of this book are devoted to this notion of total graph.
18#
發(fā)表于 2025-3-24 15:12:08 | 只看該作者
Introduction,, we state some definitions and notation used throughout to keep this book as self-contained as possible. This chapter includes some basic definitions and results which are needed for the subsequent chapters.
19#
發(fā)表于 2025-3-24 21:20:40 | 只看該作者
20#
發(fā)表于 2025-3-25 00:45:54 | 只看該作者
Total Graphs of Commutative Rings,graph. In variation to this, a graph using the addition of the ring is constructed and is called the total graph of commutative rings. The next several chapters of this book are devoted to this notion of total graph.
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2025-10-11 18:30
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
英吉沙县| 丰镇市| 西丰县| 河津市| 托克逊县| 镇原县| 三门峡市| 太和县| 姚安县| 昌黎县| 萨迦县| SHOW| 崇左市| 三都| 喀喇| 前郭尔| 铁岭县| 绥棱县| 泾川县| 东丰县| 民丰县| 海南省| 论坛| 定安县| 黔江区| 巴里| 苍溪县| 合江县| 桦甸市| 望江县| 桃源县| 祁东县| 太湖县| 罗江县| 佳木斯市| 石泉县| 上饶市| 苏尼特左旗| 武冈市| 邢台市| 华亭县|