找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: ;

[復(fù)制鏈接]
樓主: Thoracic
11#
發(fā)表于 2025-3-23 13:18:03 | 只看該作者
12#
發(fā)表于 2025-3-23 17:09:30 | 只看該作者
Graphs from Total Graphs,In this chapter, we study certain graphs obtained from total graphs of commutative rings. More specifically, we concentrate on the total graph without the zero element, the complement of the total graph, and its generalizations.
13#
發(fā)表于 2025-3-23 19:51:26 | 只看該作者
14#
發(fā)表于 2025-3-24 00:18:21 | 只看該作者
15#
發(fā)表于 2025-3-24 03:08:33 | 只看該作者
16#
發(fā)表于 2025-3-24 07:23:53 | 只看該作者
https://doi.org/10.1007/978-81-322-1865-4ph on a surface so that no two edges cross, an intuitive geometric problem that can be enriched by specifying symmetries or combinatorial side-conditions. Graphs on surfaces form a natural link between discrete and continuous mathematics.
17#
發(fā)表于 2025-3-24 10:53:46 | 只看該作者
https://doi.org/10.1007/978-981-19-2370-8graph. In variation to this, a graph using the addition of the ring is constructed and is called the total graph of commutative rings. The next several chapters of this book are devoted to this notion of total graph.
18#
發(fā)表于 2025-3-24 15:12:08 | 只看該作者
Introduction,, we state some definitions and notation used throughout to keep this book as self-contained as possible. This chapter includes some basic definitions and results which are needed for the subsequent chapters.
19#
發(fā)表于 2025-3-24 21:20:40 | 只看該作者
20#
發(fā)表于 2025-3-25 00:45:54 | 只看該作者
Total Graphs of Commutative Rings,graph. In variation to this, a graph using the addition of the ring is constructed and is called the total graph of commutative rings. The next several chapters of this book are devoted to this notion of total graph.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-11 22:41
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
新源县| 镇安县| 九江市| 灵武市| 清苑县| 淳化县| 同仁县| 涿鹿县| 当涂县| 阿尔山市| 伊春市| 余干县| 黄浦区| 磐石市| 嘉兴市| 凤城市| 饶河县| 耿马| 通海县| 广东省| 惠来县| 穆棱市| 始兴县| 达拉特旗| 巴林左旗| 福贡县| 阜阳市| 东乡| 宁夏| 多伦县| 无锡市| 图们市| 潞西市| 台州市| 阜南县| 大洼县| 南和县| 瑞昌市| 泗阳县| 花垣县| 万山特区|