找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: ;

[復(fù)制鏈接]
41#
發(fā)表于 2025-3-28 17:31:04 | 只看該作者
42#
發(fā)表于 2025-3-28 19:55:34 | 只看該作者
A Graph-Theoretic Approach to the Jump-Number Problemc representation. Then, we strengthen the greedy algorithm and exhibit a class of posets for which it generates optimal linear extensions. Finally, we give a short informal survey of construction methods for arc representations of posets and a list of the most important contributions to the jump num
43#
發(fā)表于 2025-3-29 01:46:17 | 只看該作者
44#
發(fā)表于 2025-3-29 06:15:45 | 只看該作者
45#
發(fā)表于 2025-3-29 07:35:09 | 只看該作者
46#
發(fā)表于 2025-3-29 13:12:49 | 只看該作者
https://doi.org/10.1007/978-3-658-30932-9this theme is attracting more attention. Besides the challenge of the unsolved one reason for the vitality of the diagram theme lies in its potential for highlighting graphical configurations of use both in combinatorial and structural problems.
47#
發(fā)表于 2025-3-29 17:49:53 | 只看該作者
https://doi.org/10.1007/978-3-322-94137-4ose problems where this argument is applicable, a natural question to ask is: “can this bound be achieved?” or “how close can we come to achieving the bound?” For the sorting problem above there are several well-known algorithms that essentially attain the ITB (see [Kn]), but of course this is not t
48#
發(fā)表于 2025-3-29 20:30:58 | 只看該作者
49#
發(fā)表于 2025-3-30 02:30:38 | 只看該作者
https://doi.org/10.1007/978-3-319-44377-5 apply. Other topics include duality questions for product orders or product graphs, and the study of element sets that meet all maximal chains in a poset or maximal cliques in a graph..Packing and covering focus on vertex subsets; “representation” expresses the entire relation as the union or inter
50#
發(fā)表于 2025-3-30 06:38:39 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 06:26
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
汉川市| 汕头市| 金溪县| 乌兰浩特市| 惠来县| 霞浦县| 彭山县| 务川| 宝清县| 桂平市| 德格县| 林口县| 资兴市| 安龙县| 郯城县| 隆回县| 井冈山市| 日照市| 建阳市| 二连浩特市| 洪泽县| 伊吾县| 巴东县| 罗源县| 麟游县| 儋州市| 朝阳市| 凯里市| 噶尔县| 淄博市| 万源市| 清水河县| 东港市| 和平县| 鲜城| 连江县| 崇义县| 花垣县| 和田县| 故城县| 乐昌市|